Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 37: 18-24, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37087175

RESUMEN

The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report. These requirements were applied in previous missions and are foreseen for the numerous new international missions planned for the exploration of Venus, which include NASA's VERITAS and DAVINCI missions, and ESA's EnVision mission. There are also several proposed missions including India's Shukrayaan-1, and Russia's Venera-D. These multiple plans for spacecraft coincide with a recent interest within the scientific community regarding the cloud layers of Venus, which have been suggested by some to be habitable environments. The proposed, privately funded, MIT/Rocket Lab Venus Life Finder mission is specifically designed to assess the habitability of the Venusian clouds and to search for signs of life. It includes up to three atmospheric probes, the first one targeting a launch in 2023. The COSPAR Panel on Planetary Protection evaluated scientific data that underpins the planetary protection requirements for Venus and the implications of this on the current policy. The Panel has done a thorough review of the current knowledge of the planet's conditions prevailing in the clouds. Based on the existing literature, we conclude that the environmental conditions within the Venusian clouds are orders of magnitude drier and more acidic than the tolerated survival limits of any known terrestrial extremophile organism. Because of this future orbital, landed or entry probe missions to Venus do not require extra planetary protection measures. This recommendation may be revised in the future if new observations or reanalysis of past data show any significant increment, of orders of magnitude, in the water content and the pH of the cloud layer.


Asunto(s)
Marte , Vuelo Espacial , Venus , Planetas , Medio Ambiente Extraterrestre , Contención de Riesgos Biológicos , Exobiología
2.
Life Sci Space Res (Amst) ; 36: 27-35, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36682826

RESUMEN

Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.


Asunto(s)
Marte , Procedimientos Quirúrgicos Robotizados , Vuelo Espacial , Humanos , Planetas , Medio Ambiente Extraterrestre , Nave Espacial , Exobiología/métodos , Contención de Riesgos Biológicos , Política Pública
4.
PLoS One ; 10(3): e0121600, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798821

RESUMEN

Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.


Asunto(s)
Proteínas CLOCK/genética , Ritmo Circadiano , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Longevidad , Vuelo Espacial , Animales , Proteínas CLOCK/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología
5.
Cell Metab ; 13(6): 639-54, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21641546

RESUMEN

Circadian rhythms are regulated by a synchronized system of central and peripheral clocks. Here, we show that a clock in the Drosophila fat body drives rhythmic expression of genes involved in metabolism, detoxification, the immune response, and steroid hormone regulation. Some of these genes cycle even when the fat body clock is disrupted, indicating that they are regulated by exogenous factors. Food is an important stimulus, as limiting food availability to a 6 hr interval each day drives rhythmic expression of genes in the fat body. Restricting food to a time of day when consumption is typically low desynchronizes internal rhythms because it alters the phase of rhythmic gene expression in the fat body without affecting the brain clock. Flies maintained on this paradigm produce fewer eggs than those restricted to food at the normal time. These data suggest that desynchrony of endogenous rhythms, caused by aberrant feeding patterns, affects reproductive fitness.


Asunto(s)
Relojes Circadianos/genética , Drosophila melanogaster/fisiología , Aptitud Genética , Inmunidad Adaptativa/genética , Animales , Biotransformación/genética , Encéfalo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/fisiología , Femenino , Privación de Alimentos , Perfilación de la Expresión Génica , Genes de Insecto , Metabolismo de los Lípidos/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Óvulo/metabolismo , Reproducción/genética , Transducción de Señal
6.
Cell Metab ; 8(4): 289-300, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18840359

RESUMEN

Studies in mammals have indicated a connection between circadian clocks and feeding behavior, but the nature of the interaction and its relationship to nutrient metabolism are not understood. In Drosophila, clock proteins are expressed in many metabolically important tissues but have not been linked to metabolic processes. Here we demonstrate that Drosophila feeding behavior displays a 24 hr circadian rhythm that is regulated by clocks in digestive/metabolic tissues. Flies lacking clocks in these tissues, in particular in the fat body, also display increased food consumption but have decreased levels of glycogen and a higher sensitivity to starvation. Interestingly, glycogen levels and starvation sensitivity are also affected by clocks in neuronal cells, but the effects of neuronal clocks generally oppose those of the fat body. We propose that the input of neuronal clocks and clocks in metabolic tissues is coordinated to provide effective energy homeostasis.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas/fisiología , Factores de Transcripción ARNTL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Metabolismo Energético , Cuerpo Adiposo/fisiología , Genotipo , Glucógeno/metabolismo , Homeostasis , Humanos , Masculino , Inanición , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Curr Biol ; 14(12): 1025-34, 2004 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-15202995

RESUMEN

BACKGROUND: Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 (FMR1) gene. How FMR1 affects the function of the central and peripheral nervous systems is still unclear. FMR1 is an RNA binding protein that associates with a small percentage of total mRNAs in vivo. It remains largely unknown what proteins encoded by mRNAs in the FMR1-messenger ribonuclear protein (mRNP) complex are most relevant to the affected physiological processes. RESULTS: Loss-of-function mutations in the Drosophila fragile X-related (dfmr1) gene, which is highly homologous to the human fmr1 gene, decrease the duration and percentage of time that crawling larvae spend on linear locomotion. Overexpression of DFMR1 in multiple dendritic (MD) sensory neurons increases the time percentage and duration of linear locomotion; this phenotype is similar to that caused by reduced expression of the MD neuron subtype-specific degenerin/epithelial sodium channel (DEG/ENaC) family protein Pickpocket1 (PPK1). Genetic analyses indicate that PPK1 is a key component downstream of DFMR1 in controlling the crawling behavior of Drosophila larvae. DFMR1 and ppk1 mRNA are present in the same mRNP complex in vivo and can directly bind to each other in vitro. DFMR1 downregulates the level of ppk1 mRNA in vivo, and this regulatory process also involves Argonaute2 (Ago2), a key component in the RNA interference pathway. CONCLUSIONS: These studies identify ppk1 mRNA as a physiologically relevant in vivo target of DFMR1. Our finding that the level of ppk1 mRNA is regulated by DFMR1 and Ago2 reveals a genetic pathway that controls sensory input-modulated locomotion behavior.


Asunto(s)
Regulación de la Expresión Génica , Locomoción/fisiología , Proteínas del Tejido Nervioso/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Ribonucleoproteínas/metabolismo , Canales de Sodio/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas , Cruzamientos Genéticos , Cartilla de ADN , ADN Complementario/genética , Drosophila , Proteínas de Drosophila/metabolismo , Electroforesis en Gel de Agar , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Larva/fisiología , Locomoción/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas Aferentes/metabolismo , Pruebas de Precipitina , Interferencia de ARN/fisiología , Complejo Silenciador Inducido por ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética
8.
Development ; 130(22): 5543-52, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14530299

RESUMEN

Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 gene. How these mutations affect neuronal development and function remains largely elusive. We generated specific point mutations or small deletions in the Drosophila fragile X-related (Fmr1) gene and examined the roles of Fmr1 in dendritic development of dendritic arborization (DA) neurons in Drosophila larvae. We found that Fmr1 could be detected in the cell bodies and proximal dendrites of DA neurons and that Fmr1 loss-of-function mutations increased the number of higher-order dendritic branches. Conversely, overexpression of Fmr1 in DA neurons dramatically decreased dendritic branching. In dissecting the mechanisms underlying Fmr1 function in dendrite development, we found that the mRNA encoding small GTPase Rac1 was present in the Fmr1-messenger ribonucleoprotein complexes in vivo. Mosaic analysis with a repressor cell marker (MARCM) and overexpression studies revealed that Rac1 has a cell-autonomous function in promoting dendritic branching of DA neurons. Furthermore, Fmr1 and Rac1 genetically interact with each other in controlling the formation of fine dendritic branches. These findings demonstrate that Fmr1 affects dendritic development and that Rac1 is partially responsible for mediating this effect.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila , Drosophila/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Proteínas de Unión al ARN/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Drosophila/enzimología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Larva/crecimiento & desarrollo , Mutación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/metabolismo , Proteína de Unión al GTP rac1/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-12098762

RESUMEN

In order to study the effect of argipressin(4-8)(AVP(4-8)) on the mRNA level and activity of cytidine triphosphate: phosphocholine cytidylyltransferase(CCT) in rat hippocampal neurons, and elucidate it's possible mechanism. Rat hippocampal neurons treated with AVP(4-8) or actinomycin D were incubated with different time periods. The mRNA level of CCT was detected using RT-PCR plus Southern blot, CCT activity was determined by measuring the rate of incorporation of (14)C - phosphocholine into cytidine diphosphate-choline(CDP-choline). It was found that AVP4-8 could upregulate the CCT mRNA in rat hippocampal neurons. ZDC(C)PR, the antagonist of AVP(4-8), could greatly inhibit this upregulation. Using actinomycin D to inhibite the eucaryotic transcription, it was found that the halflife of CCT mRNA could be prolonged by coincubation with AVP(4-8). Meanwhile, AVP(4-8) could also increase CCT activity in rat hippocampal neurons. These results demonstrated that AVP(4-8) upregulated CCT mRNA level and its activity through stabilizing the CCT mRNA in rat hippocampal neurons.


Asunto(s)
Arginina Vasopresina/farmacología , Citidililtransferasa de Colina-Fosfato/metabolismo , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Animales , Radioisótopos de Carbono , Células Cultivadas , Citidililtransferasa de Colina-Fosfato/genética , Citidina Difosfato Colina/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipocampo/citología , Hipocampo/enzimología , Neuronas/enzimología , Fosforilcolina/metabolismo , Embarazo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
10.
Acta Pharmacol Sin ; 23(4): 349-54, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11931693

RESUMEN

AIM: To study the localization of CTP: phosphocholine cytidylyltransferase beta isoform (CCTbeta) in rat brain, its expression in insect cells and enzymatic properties. METHODS: Using digoxigenin-labeled CCTbeta probes, in situ hybridization was carried out in rat brain wax sections. CCTbeta was overexpressed in Trichoplusia Ni (Tn) cells using baculovirus expression system. CTP:phosphocholine cytidylyltransferase assay (CT assay) and [3H] metabolic labeling experiment were used to study its activity, properties, and the effect on phosphatidylcholine (PC) synthesis. RESULTS: (1) CCbeta was abundant in CA1, CA2, CA4, and dentate gyrus (DG) region of hippocampus. (2) The content of CCTbeta in transfected Tn cells was over 1 104 times of that in rat brain, and CCTbeta increased the PC synthesis of Tn cells. (3) Hexadecylphosphocholine as well as some ions like Zn2+ and PO3-4 could inhibit the activity of CCTbeta, dCTP was another adaptive substrate of CCTbeta besides CTP. CONCLUSION: CCTbeta showed a similar localization in rat brain with the memory enhancing peptide argipressin (4-8).


Asunto(s)
Citidililtransferasa de Colina-Fosfato/metabolismo , Hipocampo/enzimología , Mariposas Nocturnas/metabolismo , Animales , Arginina Vasopresina/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Encéfalo/enzimología , Citidililtransferasa de Colina-Fosfato/biosíntesis , Citidililtransferasa de Colina-Fosfato/genética , Hibridación in Situ , Isoenzimas , Mariposas Nocturnas/genética , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Artículo en Inglés | MEDLINE | ID: mdl-12058167

RESUMEN

ZNC(C)PR can facilitate the learning and memory in rat. Transgenic experiments have revealed that long-term memory depended on cyclic AMP-response element binding protein, CREB. CREB phosphorylation at serine-133 is essential for it's transcriptional activity. Here, it was demonstrated that ZNC(C)PR could induce CREB phosphorylation at serine-133 in both rat hippocampus and rat hippocampus slices. ZDC(C)PR antagnist of ZNC(C)PR , PTX(inhibitor of G(o)/G(I) protein coupled receptor), GF109203x(inhihitor of PKC), PD98059( inhibitor of MAPK ) but not KN-62(inhibitor of CaMKII) could inhibit the phosphorylation of CREB induced by ZNC(C)PR.

12.
Artículo en Inglés | MEDLINE | ID: mdl-12058206

RESUMEN

To understand the mechanism of neurotrophic action of neuropeptide ZNC(C)PR, which could affect growth of C6 cells, fluorescent dye Fluo-3 and confocal laser scanning microscope were used to assay the intracellular calcium in C6 glioma cells. It was found that ZNC(C)PR and it's analogue NLPR could mobilize intracellular calcium in a dose-dependent manner. The ZNC(C)PR antagnist, ZDC(C)PR, could inhibit the process, and the extracellular calcium did not influence it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...