RESUMEN
The architecture of apple trees plays a pivotal role in shaping their growth and fruit-bearing potential, forming the foundation for precision apple management. Traditionally, 2D imaging technologies were employed to delineate the architectural traits of apple trees, but their accuracy was hampered by occlusion and perspective ambiguities. This study aimed to surmount these constraints by devising a 3D geometry-based processing pipeline for apple tree structure segmentation and architectural trait characterization, utilizing point clouds collected by a terrestrial laser scanner (TLS). The pipeline consisted of four modules: (a) data preprocessing module, (b) tree instance segmentation module, (c) tree structure segmentation module, and (d) architectural trait extraction module. The developed pipeline was used to analyze 84 trees of two representative apple cultivars, characterizing architectural traits such as tree height, trunk diameter, branch count, branch diameter, and branch angle. Experimental results indicated that the established pipeline attained an R2 of 0.92 and 0.83, and a mean absolute error (MAE) of 6.1 cm and 4.71 mm for tree height and trunk diameter at the tree level, respectively. Additionally, at the branch level, it achieved an R2 of 0.77 and 0.69, and a MAE of 6.86 mm and 7.48° for branch diameter and angle, respectively. The accurate measurement of these architectural traits can enable precision management in high-density apple orchards and bolster phenotyping endeavors in breeding programs. Moreover, bottlenecks of 3D tree characterization in general were comprehensively analyzed to reveal future development.
RESUMEN
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1ß is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1ß does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1ß/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1ß level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1ß or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Asunto(s)
Empalme Alternativo , Malatos , Malus , Malatos/metabolismo , Empalme Alternativo/genética , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vacuolas/metabolismo , Vacuolas/genética , Regulación de la Expresión Génica de las Plantas/genéticaRESUMEN
Plant architecture is 1 of the most important factors that determines crop yield potential and productivity. In apple (Malus domestica), genetic improvement of tree architecture has been challenging due to a long juvenile phase and growth as complex trees composed of a distinct scion and a rootstock. To better understand the genetic control of apple tree architecture, the dominant weeping growth phenotype was investigated. We report the identification of MdLAZY1A (MD13G1122400) as the genetic determinant underpinning the Weeping (W) locus that largely controls weeping growth in Malus. MdLAZY1A is 1 of the 4 paralogs in apple that are most closely related to AtLAZY1 involved in gravitropism in Arabidopsis (Arabidopsis thaliana). The weeping allele (MdLAZY1A-W) contains a single nucleotide mutation c.584T>C that leads to a leucine to proline (L195P) substitution within a predicted transmembrane domain that colocalizes with Region III, 1 of the 5 conserved regions in LAZY1-like proteins. Subcellular localization revealed that MdLAZY1A localizes to the plasma membrane and nucleus in plant cells. Overexpressing the weeping allele in apple cultivar Royal Gala (RG) with standard growth habit impaired its gravitropic response and altered the growth to weeping-like. Suppressing the standard allele (MdLAZY1A-S) by RNA interference (RNAi) in RG similarly changed the branch growth direction to downward. Overall, the L195P mutation in MdLAZY1A is genetically causal for weeping growth, underscoring not only the crucial roles of residue L195 and Region III in MdLAZY1A-mediated gravitropic response but also a potential DNA base editing target for tree architecture improvement in Malus and other crops.
Asunto(s)
Malus , Malus/genética , Gravitropismo/genética , Sustitución de Aminoácidos , Fenotipo , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Somatic mutations may alter important traits in tree fruits, such as fruit color, size and maturation date. Autumn Gala (AGala), a somatic mutation from apple cultivar Gala, matures 4 weeks later than Gala. To understand the mechanisms underlying the delayed maturation, RNA-seq analyses were conducted with fruit sampled at 13 (Gala) and 16 (AGala) time-points during their growth and development. Weighted gene co-expression network analysis (WGCNA) of 23 372 differentially expressed genes resulted in 25 WGCNA modules. Of these, modules 1 (r = -0.98, P = 2E-21) and 2 (r = -0.52, P = 0.004), which were suppressed in AGala, were correlated with fruit maturation date. Surprisingly, 77 of the 152 member genes in module 1 were harbored in a 2.8-Mb genomic region on chromosome 6 that was deleted and replaced by a 10.7-kb gypsy-like retrotransposon (Gy-36) from chromosome 7 in AGala. Among the 77 member genes, MdACT7 was the most suppressed (by 10.5-fold) in AGala due to a disruptive 2.5-kb insertion in coding sequence. Moreover, MdACT7 is the exclusive apple counterpart of Arabidopsis ACT7 known of essential roles in plant development, and the functional allele MdACT7, which was lost to the deletion in AGala, was associated with early fruit maturation in 268 apple accessions. Overexpressing alleles MdACT7 and Mdact7 in an Arabidopsis act7 line showed that MdACT7 largely rescued its stunted growth and delayed initial flowering while Mdact7 did not. Therefore, the 2.8-Mb hemizygous deletion is largely genetically causal for fruit maturation delay in AGala, and the total loss of MdACT7 might have contributed to the phenotype.
Asunto(s)
Arabidopsis , Malus , Arabidopsis/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos/genéticaRESUMEN
Jujube (Ziziphus jujuba) was domesticated from wild jujube (Z. jujuba var. spinosa). Here, integrative physiological, metabolomic, and comparative proteomic analyses were performed to investigate the fruit expansion and fruit taste components in a jujube cultivar 'Junzao' and a wild jujube 'Qingjiansuanzao' with contrasting fruit size and taste. We revealed that the duration of cell division and expansion largely determined the final fruit size, while the intercellular space in the mesocarp dictated the ratio of mesocarp volume in mature fruits. The high levels of endogenous gibbereline3 (GA) and zeatin in the growing fruit of 'Junzao' were associated with their increased fruit expansion. Compared with 'Junzao,' wild jujube accumulated lower sugars and higher organic acids. Furthermore, several protein co-expression modules and important member proteins correlated with fruit expansion, sugar synthesis, and ascorbic acid metabolism were identified. Among them, GA20OX involved in GA biosynthesis was identified as a key protein regulating fruit expansion, whereas sucrose-6-phosphate synthase (SPS) and neutral invertase (NINV) were considered as key enzymes promoting sugar accumulation and as major factors regulating the ratio of sucrose to hexose in jujube fruits, respectively. Moreover, the increase of Nicotinamide adenine dinucleotide-Malate dehydrogenase (NAD-MDH) activity and protein abundance were associated with the malic acid accumulation, and the high accumulation of ascorbic acid in wild jujube was correlated with the elevated abundance of GalDH, ZjAPXs, and MDHAR1, which are involved in the ascorbic acid biosynthesis and recycling pathways. Overall, these results deepened the understanding of mechanisms regulating fruit expansion and sugar/acids metabolisms in jujube fruit.
RESUMEN
Domestication of the apple was mainly driven by interspecific hybridization. In the present study, we report the haplotype-resolved genomes of the cultivated apple (Malus domestica cv. Gala) and its two major wild progenitors, M. sieversii and M. sylvestris. Substantial variations are identified between the two haplotypes of each genome. Inference of genome ancestry identifies ~23% of the Gala genome as of hybrid origin. Deep sequencing of 91 accessions identifies selective sweeps in cultivated apples that originated from either of the two progenitors and are associated with important domestication traits. Construction and analyses of apple pan-genomes uncover thousands of new genes, with hundreds of them being selected from one of the progenitors and largely fixed in cultivated apples, revealing that introgression of new genes/alleles is a hallmark of apple domestication through hybridization. Finally, transcriptome profiles of Gala fruits at 13 developmental stages unravel ~19% of genes displaying allele-specific expression, including many associated with fruit quality.
Asunto(s)
Domesticación , Hibridación Genética/genética , Malus/clasificación , Malus/genética , Evolución Molecular , Frutas/genética , Genoma de Planta/genéticaRESUMEN
Acidity is a critical component determining apple fruit quality. Previous studies reported two major acidity quantitative trait loci (QTLs) on linkage groups (LGs) 16 (Ma) and 8 (Ma3), respectively, and their homozygous genotypes mama and ma3ma3 usually confer low titratable acidity (TA) (<3.0 mg ml-1) to apple fruit. However, apples of genotypes Ma- (MaMa and Mama) or Ma3- (Ma3Ma3 and Ma3ma3) frequently show an acidity range spanning both regular (TA 3.0-10.0 mg ml-1) and high (TA > 10 mg ml-1) acidity levels. To date, the genetic control for high-acidity apples remains essentially unknown. In order to map QTLs associated with high acidity, two genomic DNA pools, one for high acidity and the other for regular acidity, were created in an interspecific F1 population Royal Gala (Malus domestica) × PI 613988 (M. sieversii) of 191 fruit-bearing progenies. By Illumina paired-end sequencing of the high and regular acidity pools, 1,261,640 single-nucleotide variants (SNVs) commonly present in both pools were detected. Using allele frequency directional difference and density (AFDDD) mapping approach, one region on chromosome 4 and another on chromosome 6 were identified to be putatively associated with high acidity, and were named Ma6 and Ma4, respectively. Trait association analysis of DNA markers independently developed from the Ma6 and Ma4 regions confirmed the mapping of Ma6 and Ma4. In the background of MaMa, 20.6% of acidity variation could be explained by Ma6, 28.5% by Ma4, and 50.7% by the combination of both. The effects of Ma6 and Ma4 in the background of Mama were also significant, but lower. These findings provide important genetic insight into high acidity in apple.
RESUMEN
The firmness of fleshy fruit crops has a significant effect on their quality, consumer preference, shelf life and transportability. In a combined quantitative trait locus and genome-wide association studies study of apple fruit texture, we identified a mutation (C-G) in the ethylene response factor-associated amphiphilic repression (EAR) motif in the coding region of the apple ETHYLENE RESPONSE FACTOR4 (ERF4) gene. Chromatin immunoprecipitation sequencing showed that ERF4 binds to the promoter of ERF3, which is involved in regulation of ethylene biosynthesis. The EAR mutation in ERF4 results in reduced repression of ERF3 expression, which is turn promotes ethylene production and loss of fruit firmness. ERF4 acts as a transcriptional repressor whose activity is modulated by a TOPLESS co-repressor 4 (TPL4)-binding EAR repression motif. Biolayer interferometry analysis showed that the mutation in the EAR motif causes a reduction in the interaction with TPL4. Suppression of ERF4 or TPL4 promoted fruit ripening and ethylene production. Taken together, our results provide insights into how ERF4 allelic variation underlies an important fruit quality trait.
Asunto(s)
Etilenos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Proteínas de Plantas/fisiología , Proteínas Represoras/fisiología , Inmunoprecipitación de Cromatina , Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo , Malus/genética , Malus/crecimiento & desarrollo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Columnar apples trees, originated from a bud mutation 'Wijcik McIntosh,' develop a simple canopy and set fruit on spurs. These characteristics make them an important genetic resource for improvement of tree architecture. Genetic studies have uncovered that columnar growth habit is a dominant trait and is caused by a retroposon insertion that induces the expression of the neighboring gene Co encoding a 2OG-Fe(II) oxygenase. Here we report the genetic mapping of two loci of recessive suppressors (genes) c2 (on Chr10) and c3 (on Chr9) that are linked to repression of the retroposon-induced Co gene expression and associated columnar phenotype in 275 F1 seedlings, which were developed from a reciprocal cross between two columnar selections heterozygous at the Co locus. The mapping was accomplished by sequencing a genomic pool comprising 18 columnar seedlings and another pool of 16 standard seedlings that also carry the retroposon insertion, and by exploring DNA variants of segregation types that are informative for mapping recessive traits in apple. The informative segregation types include
RESUMEN
Malate accumulation in the vacuole largely determines apple (Malus domestica) fruit acidity, and low fruit acidity is strongly associated with truncation of Ma1, an ortholog of ALUMINUM-ACTIVATED MALATE TRANSPORTER9 (ALMT9) in Arabidopsis (Arabidopsis thaliana). A mutation at base 1,455 in the open reading frame of Ma1 leads to a premature stop codon that truncates the protein by 84 amino acids at its C-terminal end. Here, we report that both the full-length protein, Ma1, and its naturally occurring truncated protein, ma1, localize to the tonoplast; when expressed in Xenopus laevis oocytes and Nicotiana benthamiana cells, Ma1 mediates a malate-dependent inward-rectifying current, whereas the ma1-mediated transmembrane current is much weaker, indicating that ma1 has significantly lower malate transport activity than Ma1. RNA interference suppression of Ma1 expression in 'McIntosh' apple leaves, 'Empire' apple fruit, and 'Orin' apple calli results in a significant decrease in malate level. Genotyping and phenotyping of 186 apple accessions from a diverse genetic background of 17 Malus species combined with the functional analyses described above indicate that Ma1 plays a key role in determining fruit acidity and that the truncation of Ma1 to ma1 is genetically responsible for low fruit acidity in apple. Furthermore, we identified a C-terminal domain conserved in all tonoplast-localized ALMTs essential for Ma1 function; protein truncations into this conserved domain significantly lower Ma1 transport activity. We conclude that the truncation of Ma1 to ma1 reduces its malate transport function by removing a conserved C-terminal domain, leading to low fruit acidity in apple.
Asunto(s)
Frutas/genética , Frutas/metabolismo , Malatos/metabolismo , Malus/genética , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/metabolismo , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Dominios Proteicos , Interferencia de ARN , Nicotiana/metabolismo , Nicotiana/fisiología , Vacuolas/genética , Vacuolas/fisiología , Xenopus laevisRESUMEN
To unlock the power of next generation sequencing-based bulked segregant analysis in allele discovery in out-crossing woody species, and to understand the genetic control of the weeping trait, an F1 population from the cross 'Cheal's Weeping' × 'Evereste' was used to create two genomic DNA pools 'weeping' (17 progeny) and 'standard' (16 progeny). Illumina pair-end (2 × 151 bp) sequencing of the pools to a 27.1× (weeping) and a 30.4× (standard) genome (742.3 Mb) coverage allowed detection of 84562 DNA variants specific to 'weeping', 92148 specific to 'standard', and 173169 common to both pools. A detailed analysis of the DNA variant genotypes in the pools predicted three informative segregation types of variants:
Asunto(s)
ADN de Plantas/genética , Variación Genética , Genoma de Planta , Malus/genética , Mapeo Cromosómico , Genotipo , Malus/crecimiento & desarrollo , Secuenciación Completa del GenomaRESUMEN
Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road is proposed based on evidence from diverse genomic analyses. Cultivated apples likely originate from Malus sieversii in Kazakhstan, followed by intensive introgressions from M. sylvestris. M. sieversii in Xinjiang of China turns out to be an "ancient" isolated ecotype not directly contributing to apple domestication. We have identified selective sweeps underlying quantitative trait loci/genes of important fruit quality traits including fruit texture and flavor, and provide evidences supporting a model of apple fruit size evolution comprising two major events with one occurring prior to domestication and the other during domestication. This study outlines the genetic basis of apple domestication and evolution, and provides valuable information for facilitating marker-assisted breeding and apple improvement.Apple is one of the most important fruit crops. Here, the authors perform deep genome resequencing of 117 diverse accessions and reveal comprehensive models of apple origin, speciation, domestication, and fruit size evolution as well as candidate genes associated with important agronomic traits.
Asunto(s)
Frutas/crecimiento & desarrollo , Genoma de Planta , Malus/genética , Cruzamiento , China , Evolución Molecular , Frutas/clasificación , Frutas/genética , Malus/clasificación , Malus/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1-2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1-2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a.
RESUMEN
Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation.
Asunto(s)
Antocianinas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Malus/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Dermatoglifia del ADN , Frutas , Perfilación de la Expresión Génica , Genes de Plantas , Marcadores Genéticos , Regiones Promotoras GenéticasRESUMEN
BACKGROUND: Acidity is a major contributor to fruit quality. Several organic acids are present in apple fruit, but malic acid is predominant and determines fruit acidity. The trait is largely controlled by the Malic acid (Ma) locus, underpinning which Ma1 that putatively encodes a vacuolar aluminum-activated malate transporter1 (ALMT1)-like protein is a strong candidate gene. We hypothesize that fruit acidity is governed by a gene network in which Ma1 is key member. The goal of this study is to identify the gene network and the potential mechanisms through which the network operates. RESULTS: Guided by Ma1, we analyzed the transcriptomes of mature fruit of contrasting acidity from six apple accessions of genotype Ma_ (MaMa or Mama) and four of mama using RNA-seq and identified 1301 fruit acidity associated genes, among which 18 were most significant acidity genes (MSAGs). Network inferring using weighted gene co-expression network analysis (WGCNA) revealed five co-expression gene network modules of significant (P < 0.001) correlation with malate. Of these, the Ma1 containing module (Turquoise) of 336 genes showed the highest correlation (0.79). We also identified 12 intramodular hub genes from each of the five modules and 18 enriched gene ontology (GO) terms and MapMan sub-bines, including two GO terms (GO:0015979 and GO:0009765) and two MapMap sub-bins (1.3.4 and 1.1.1.1) related to photosynthesis in module Turquoise. Using Lemon-Tree algorithms, we identified 12 regulator genes of probabilistic scores 35.5-81.0, including MDP0000525602 (a LLR receptor kinase), MDP0000319170 (an IQD2-like CaM binding protein) and MDP0000190273 (an EIN3-like transcription factor) of greater interest for being one of the 18 MSAGs or one of the 12 intramodular hub genes in Turquoise, and/or a regulator to the cluster containing Ma1. CONCLUSIONS: The most relevant finding of this study is the identification of the MSAGs, intramodular hub genes, enriched photosynthesis related processes, and regulator genes in a WGCNA module Turquoise that not only encompasses Ma1 but also shows the highest modular correlation with acidity. Overall, this study provides important insight into the Ma1-mediated gene network controlling acidity in mature apple fruit of diverse genetic background.
Asunto(s)
Frutas/genética , Redes Reguladoras de Genes , Malatos/metabolismo , Malus/genética , Algoritmos , Frutas/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Malus/metabolismo , Análisis de Secuencia de ARNRESUMEN
Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Malus/genética , Malus/fisiología , Sorbitol/metabolismo , Estrés Fisiológico/genética , Ácido Abscísico/biosíntesis , Análisis por Conglomerados , Ontología de Genes , Redes y Vías Metabólicas/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.
Asunto(s)
Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Malus/genética , Transcriptoma/genética , Análisis por Conglomerados , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genes de Plantas/genética , Genotipo , Malatos/metabolismo , Malus/crecimiento & desarrollo , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Factores de TiempoRESUMEN
The reference genome of apple (Malus × domestica) has been available since 2010. Despite being a milestone in apple genomics, the reference genome is difficult to be used as a reference in RNA-seq (RNA sequencing) analysis, a widespread technology in transcriptomic studies. One of the major limitations appears to be the low coverage of the reference transcriptome in RNA-seq mapping of reads. To improve the reference transcriptome, we obtained 14 sets of strand-specific RNA-seq data of 168.5 million reads in total from fruit of Golden Delicious (GD, the source of the reference genome) in varying growth and developmental stages. Using a combination of genome-guided assembly and de novo assembly, the apple reference transcriptome was improved to a collection of 71,178 genes or transcripts, which includes 53,654 genes predicted originally (with MDP prefixed in their IDs) and 17,524 novel transcripts. Of these novel transcripts, 8,144 were identified from reads directly mapped to the reference genome while the remaining 9,380 were extracted from de novo assemblies of reads that could not be initially mapped to the reference genome. Evaluating the improved apple reference transcriptome with reads from Golden Delicious and other genotypes used in this and other studies showed that it allowed 62.5 ± 9.3-82.3 ± 2.7 % of reads to be mapped, a marked increase from the low rates of 37.4 ± 7.7-46.6 ± 7.1 % offered by the original reference transcriptome. The improved reference transcriptome therefore represents a step forward towards a complete reference transcriptome in apple.
Asunto(s)
Malus/genética , Transcriptoma , Mapeo Cromosómico , Cromosomas de las Plantas , Biología Computacional , Genoma de Planta , Genómica/métodos , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN/métodosRESUMEN
Acidity levels greatly affect the taste and flavor of fruit, and consequently its market value. In mature apple fruit, malic acid is the predominant organic acid. Several studies have confirmed that the major quantitative trait locus Ma largely controls the variation of fruit acidity levels. The Ma locus has recently been defined in a region of 150 kb that contains 44 predicted genes on chromosome 16 in the Golden Delicious genome. In this study, we identified two aluminum-activated malate transporter-like genes, designated Ma1 and Ma2, as strong candidates of Ma by narrowing down the Ma locus to 65-82 kb containing 12-19 predicted genes depending on the haplotypes. The Ma haplotypes were determined by sequencing two bacterial artificial chromosome clones from G.41 (an apple rootstock of genotype Mama) that cover the two distinct haplotypes at the Ma locus. Gene expression profiling in 18 apple germplasm accessions suggested that Ma1 is the major determinant at the Ma locus controlling fruit acidity as Ma1 is expressed at a much higher level than Ma2 and the Ma1 expression is significantly correlated with fruit titratable acidity (R (2) = 0.4543, P = 0.0021). In the coding sequences of low acidity alleles of Ma1 and Ma2, sequence variations at the amino acid level between Golden Delicious and G.41 were not detected. But the alleles for high acidity vary considerably between the two genotypes. The low acidity allele of Ma1, Ma1-1455A, is mainly characterized by a mutation at base 1455 in the open reading frame. The mutation leads to a premature stop codon that truncates the carboxyl terminus of Ma1-1455A by 84 amino acids compared with Ma1-1455G. A survey of 29 apple germplasm accessions using marker CAPS(1455) that targets the SNP(1455) in Ma1 showed that the CAPS(1455A) allele was associated completely with high pH and highly with low titratable acidity, suggesting that the natural mutation-led truncation is most likely responsible for the abolished function of Ma for low pH or high acidity in apple.
Asunto(s)
Aluminio/metabolismo , Frutas/genética , Malatos/metabolismo , Malus/genética , Mutación , Transportadores de Anión Orgánico/genética , Sitios de Carácter Cuantitativo , Alelos , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas , Variación Genética , Haplotipos , Datos de Secuencia MolecularRESUMEN
Tree architecture is an important, complex and dynamic trait affected by diverse genetic, ontogenetic and environmental factors. 'Wijcik McIntosh', a columnar (reduced branching) sport of 'McIntosh' and a valuable genetic resource, has been used intensively in apple-breeding programs for genetic improvement of tree architecture. The columnar growth habit is primarily controlled by the dominant allele of gene Co (columnar) on linkage group-10. But the Co locus is not well mapped and the Co gene remains unknown. To precisely map the Co locus and to identify candidate genes of Co, a sequence-based approach using both peach and apple genomes was used to develop new markers linked more tightly to Co. Five new simple sequence repeats markers were developed (C1753-3520, C18470-25831, C6536-31519, C7223-38004 and C7629-22009). The first four markers were obtained from apple genomic sequences on chromosome-10, whereas the last (C7629-22009) was from an unanchored apple contig that contains an apple expressed sequence tag CV082943, which was identified through synteny analysis between the peach and apple genomes. Genetic mapping of these five markers in four F(1) populations of 528 genotypes and 290 diverse columnar selections/cultivars (818 genotypes in total) delimited the Co locus in a genetic interval with 0.37 % recombination between markers C1753-3520 and C7629-22009. Marker C18470-25831 co-segregates with Co in the 818 genotypes studied. The Co region is estimated to be 193 kb and contains 26 predicted gene in the 'Golden Delicious' genome. Among the 26 genes, three are putative LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) containing transcription factor genes known of essential roles in plant lateral organ development, and are therefore considered as strong candidates of Co, designated MdLBD1, MdLBD2, and MdLBD3. Although more comprehensive studies are required to confirm the function of MdLBD1-3, the present work represents an important step forward to better understand the genetic and molecular control of tree architecture in apple.