Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Robot Autom Lett ; 8(3): 1287-1294, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37997605

RESUMEN

This paper introduces the first integrated real-time intraoperative surgical guidance system, in which an endoscope camera of da Vinci surgical robot and a transrectal ultrasound (TRUS) transducer are co-registered using photoacoustic markers that are detected in both fluorescence (FL) and photoacoustic (PA) imaging. The co-registered system enables the TRUS transducer to track the laser spot illuminated by a pulsed-laser-diode attached to the surgical instrument, providing both FL and PA images of the surgical region-of-interest (ROI). As a result, the generated photoacoustic marker is visualized and localized in the da Vinci endoscopic FL images, and the corresponding tracking can be conducted by rotating the TRUS transducer to display the PA image of the marker. A quantitative evaluation revealed that the average registration and tracking errors were 0.84 mm and 1.16°, respectively. This study shows that the co-registered photoacoustic marker tracking can be effectively deployed intraoperatively using TRUS+PA imaging providing functional guidance of the surgical ROI.

2.
IEEE Trans Med Robot Bionics ; 5(4): 966-977, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38779126

RESUMEN

As one of the most commonly performed spinal interventions in routine clinical practice, lumbar punctures are usually done with only hand palpation and trial-and-error. Failures can prolong procedure time and introduce complications such as cerebrospinal fluid leaks and headaches. Therefore, an effective needle insertion guidance method is desired. In this work, we present a complete lumbar puncture guidance system with the integration of (1) a wearable mechatronic ultrasound imaging device, (2) volume-reconstruction and bone surface estimation algorithms and (3) two alternative augmented reality user interfaces for needle guidance, including a HoloLens-based and a tablet-based solution. We conducted a quantitative evaluation of the end-to-end navigation accuracy, which shows that our system can achieve an overall needle navigation accuracy of 2.83 mm and 2.76 mm for the Tablet-based and the HoloLens-based solutions, respectively. In addition, we conducted a preliminary user study to qualitatively evaluate the effectiveness and ergonomics of our system on lumbar phantoms. The results show that users were able to successfully reach the target in an average of 1.12 and 1.14 needle insertion attempts for Tablet-based and HoloLens-based systems, respectively, exhibiting the potential to reduce the failure rates of lumbar puncture procedures with the proposed lumbar-puncture guidance.

3.
Int J Comput Assist Radiol Surg ; 17(5): 911-920, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35334043

RESUMEN

PURPOSE: Ultrasound-guided spine interventions often suffer from the insufficient visualization of key anatomical structures due to the complex shapes of the self-shadowing vertebrae. Therefore, we propose an ultrasound imaging paradigm, AutoInFocus (automatic insonification optimization with controlled ultrasound), to improve the key structure visibility. METHODS: A phased-array probe is used in conjunction with a motion platform to image a controlled workspace, and the resulting images from multiple insonification angles are combined to reveal the target anatomy. This idea is first evaluated in simulation and then realized as a robotic platform and a miniaturized patch device. A spine phantom (CIRS) and its CT scan were used in the evaluation experiments to quantitatively and qualitatively analyze the advantages of the proposed method over the traditional approach. RESULTS: We showed in simulation that the proposed system setup increased the visibility of interspinous space boundary, a key feature for lumbar puncture guidance, from 44.13 to 67.73% on average, and the 3D spine surface coverage from 14.31 to 35.87%, compared to traditional imaging setup. We also demonstrated the feasibility of both robotic and patch-based realizations in a spine phantom study. CONCLUSION: This work lays the foundation for a new imaging paradigm that leverages redundant and controlled insonification to allow for imaging optimization of the complex vertebrae anatomy, making it possible for high-quality visualization of key anatomies during ultrasound-guided spine interventions.


Asunto(s)
Columna Vertebral , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Columna Vertebral/diagnóstico por imagen , Ultrasonografía/métodos , Ultrasonografía Intervencional/métodos
4.
Ultrasonics ; 118: 106549, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34474357

RESUMEN

The state-of-the-art configurations for acoustic-resolution photoacoustic (PA) microscope (AR-PAM) are large in size and expensive, hindering their democratization. While previous research on AR-PAMs introduced a low-cost light source to reduce the cost, few studies have investigated the possibility of optimizing the sensor actuation, particularly for the AR-PAM. Additionally, there is an unmet need to evaluate the image quality deterioration associated with the actuation inaccuracy. A low-cost actuation device is introduced to reduce the system size and cost of the AR-PAM while maintaining the image quality by implementing the advanced beamformers. This work proposes an AR-RAM incorporating the delta configuration actuator adaptable from a low-cost off-the-shelf 3D printer as the sensor actuation device. The image degradation due to the data acquisition positioning inaccuracy is evaluated in the simulation. We further assess the mitigation of potential actuation precision uncertainty through advanced 3D synthetic aperture focusing algorithms represented by the Delay-and-Sum (DAS) with Coherence Factor (DAS+CF) and Delay-Multiply-and-Sum (DMAS) algorithms. The simulation study demonstrated the tolerance of image quality on actuation inaccuracy and the effect of compensating the actuator motion precision error through advanced reconstruction algorithms. With those algorithms, the image quality degradation was suppressed to within 25% with the presence of 0.2 mm motion inaccuracy. The experimental evaluation using phantoms and an ex-vivo sample presented the applicability of low-cost delta configuration actuators for AR-PAMs. The measured full width at half maximum of the 0.2 mm diameter pencil-lead phantom were 0.45 ± 0.06 mm, 0.31 ± 0.04 mm, and 0.35 ± 0.07 mm, by applying the DAS, DAS+CF, and DMAS algorithms, respectively. AR-PAMs with a compact and low-cost delta configuration provide high-quality PA imaging with better accessibility for biomedical applications. The research evaluated the image degradation contributed by the actuation inaccuracy and suggested that the advanced beamformers are capable of suppressing the actuation inaccuracy.

5.
IEEE Int Ultrason Symp ; 20202020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34306522

RESUMEN

The multi-bounce laser microphone utilizes optical methods to detect the displacement of a gold-covered thin film diaphragm caused by ultrasound signal pressure waves. This sensitive all-optical sensing technique provides new opportunities for advanced ultrasound imaging as it is expected to achieve a higher detection signal-to-noise ratio (SNR) in a broader spectrum, as compared to conventional ultrasonic transducers. The technique does not involve signal time-averaging and the real-time enhancement in detection SNR stems from the amplification of signal strength due to multiple bouncing off the diaphragm. The system was previously developed for detecting acoustic signatures generated by explosives and were limited to lower than 10 kHz in frequency. To demonstrate its feasibility for biomedical imaging applications, preliminary experiments were conducted to show high fidelity detection of ultrasound waves with frequencies ranging from 100 kHz to in excess of 1 MHz. Experimental results are also presented in this work demonstrating the improved detection sensitivity of the multi-bounce laser microphone in detecting ultrasound signals when compared with a commercial Fabry-Perot type optical hydrophone. Furthermore, we also applied the multi-bounce laser microphone to detect photoacoustic signatures emitted by India ink when a LED bar is used as the excitation source without signal averaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...