Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649376

RESUMEN

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

2.
Int J Antimicrob Agents ; 62(3): 106896, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343807

RESUMEN

Highly fluoroquinolone-resistant Salmonella enterica serotype Kentucky has become widespread in recent years, largely associated with the spread of sequence type 198 (ST198), which often leads to multidrug resistance. Research on the genomic epidemiology of Salmonella Kentucky in China is currently uncommon. In this study, we analysed the genomic epidemiology and antimicrobial resistance characteristics of Salmonella Kentucky ST198 collected from foodborne disease surveillance in Shenzhen, China, during 2010-2021, using whole-genome sequencing and antibiotic susceptibility testing. In addition, 158 global Salmonella Kentucky ST198 genomes were included for comparison. Among 8559 Salmonella isolates, 43 Salmonella Kentucky ST198 isolates were detected during 2010-2021. The global Salmonella Kentucky ST198 evolutionary tree was divided into five clades, with Shenzhen isolates distributed in clades 198.1, 198.2-1 and 198.2-2, mainly clustered with Chinese strains. Strains in clade 198.2 dominated in Shenzhen and all of them showed multidrug resistance. Nine strains showed high resistance to ceftriaxone, which was associated with blaCTX-M-14b in clade 198.2-1, which was demonstrated to be located on the chromosome. Fifteen strains showed high resistance to ciprofloxacin, which was associated with carriage of qnrS1 in clade 198.2-2. qnrS1 was first located on an IncHI2 plasmid and then transferred into the chromosome. Here we report the genomic and antimicrobial resistance characterisation of Salmonella Kentucky ST198 in Shenzhen. Of particular concern, we identified for the first time a clade 198.2-1 isolate carrying blaCTX-M-14b as well as chromosomally located qnrS1 in clade 198.2-2 of Salmonella Kentucky ST198 in China, highlighting the necessity of surveillance of clade 198.2.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Humanos , Antibacterianos/farmacología , Salmonella enterica/genética , Serogrupo , Infecciones por Salmonella/epidemiología , Kentucky , Farmacorresistencia Bacteriana Múltiple/genética
3.
J Phys Condens Matter ; 35(37)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290451

RESUMEN

Co3Sn2S2is believed to be a magnetic Weyl semimetal. It displays large anomalous Hall, Nernst and thermal Hall effects with a remarkably large anomalous Hall angle. Here, we present a comprehensive study of how substituting Co by Fe or Ni affects the electrical and thermoelectric transport. We find that doping alters the amplitude of the anomalous transverse coefficients. The maximum decrease in the amplitude of the low-temperature anomalous Hall conductivityσijAis twofold. Comparing our results with theoretical calculations of the Berry spectrum assuming a rigid shift of the Fermi level, we find that given the modest shift in the position of the chemical potential induced by doping, the experimentally observed variation occurs five times faster than expected. Doping affects the amplitude and the sign of the anomalous Nernst coefficient. Despite these drastic changes, the amplitude of theαijA/σijAratio at the Curie temperature remains close to≈0.5kB/e, in agreement with the scaling relationship observed across many topological magnets.

4.
Front Microbiol ; 14: 1118056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113229

RESUMEN

Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR).

5.
Front Microbiol ; 13: 1065672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605513

RESUMEN

Salmonella enterica subsp. enterica serovar Derby (S. Derby) is one of the most common serotypes responsible for salmonellosis in humans and animals. The two main sequence types (ST) observed in China are ST40 and ST71, with ST40 presently being the most common in Shenzhen. Recent years have seen an increasing number of cases of salmonella caused by ST40 S. Derby, but the epidemiology is not clear. We gathered 314 ST40 S. Derby isolates from food and patient samples for 11 years in Shenzhen; 76 globally prevalent representative strains were also collected. Whole-genome sequencing (WGS) combined with drug resistance phenotyping was used to examine population structural changes, inter-host associations, drug resistance characteristics, and the food-transmission risks of ST40 S. Derby in Shenzhen over this period. The S. enterica evolutionary tree is divided into five clades, and the strains isolated in Shenzhen were primarily concentrated in Clades 2, 4, and 5, and thus more closely related to strains from Asian (Thailand and Vietnam) than European countries. Our 11-year surveillance of S. Derby in Shenzhen showed that Clades 2, 4, and 5 are now the dominant epidemic branches, and branches 2 and 5 are heavily multi-drug resistant. The main resistance pattern is ampicillin-tetracycline-ciprofloxacin-chloramphenicol-nalidixic acid-streptomycin-sulfamethoxazole/trimethoprim. This may lead to a trend of increasing resistance to ST40 S. Derby in Shenzhen. Using a segmentation of ≤3 SNP among clone clusters, we discovered that Clades 2 and 4 contained multiple clonal clusters of both human- and food-derived strains. The food-derived strains were mainly isolated from pig liver, suggesting this food has a high risk of causing disease outbreaks in Shenzhen.

6.
Front Microbiol ; 12: 799150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058914

RESUMEN

Purpose: To investigate and characterize the putative Elizabethkingia anophelis contaminant isolated from throat and anal swab samples of patients from three fever epidemic clusters, which were not COVID-19 related, in Shenzhen, China, during COVID-19 pandemic. Methods: Bacteria were cultured from throat (n = 28) and anal (n = 3) swab samples from 28 fever adolescent patients. The isolated bacterial strains were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) and the VITEK2 automated identification system. Nucleic acids were extracted from the patient samples (n = 31), unopened virus collection kits from the same manufacturer as the patient samples (n = 35, blank samples) and from unopened throat swab collection kits of two other manufacturers (n = 22, control samples). Metagenomic sequencing and quantitative real-time PCR (qPCR) detection were performed. Blood serum collected from patients (n = 13) was assessed for the presence of antibodies to E. anophelis. The genomic characteristics, antibiotic susceptibility, and heat resistance of E. anophelis isolates (n = 31) were analyzed. Results: The isolates were identified by MALDI-TOF/MS and VITEK2 as Elizabethkingia meningoseptica. DNA sequence analysis confirmed isolates to be E. anophelis. The patients' samples and blank samples were positive for E. anophelis. Control samples were negative for E. anophelis. The sera from a sub-sample of 13 patients were antibody-negative for isolated E. anophelis. Most of the isolates were highly homologous and carried multiple ß-lactamase genes (bla B, bla GOB, and bla CME). The isolates displayed resistance to nitrofurans, penicillins, and most ß-lactam drugs. The bacteria survived heating at 56°C for 30 min. Conclusion: The unopened commercial virus collection kits from the same manufacturer as those used to swab patients were contaminated with E. anophelis. Patients were not infected with E. anophelis and the causative agent for the fevers remains unidentified. The relevant authorities were swiftly notified of this discovery and subsequent collection kits were not contaminated. DNA sequence-based techniques are the definitive method for Elizabethkingia species identification. The E. anophelis isolates were multidrug-resistant, with partial heat resistance, making them difficult to eradicate from contaminated surfaces. Such resistance indicates that more attention should be paid to disinfection protocols, especially in hospitals, to avoid outbreaks of E. anophelis infection.

7.
Sci Adv ; 6(17): eaaz3522, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494640

RESUMEN

The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.

8.
Nat Commun ; 10(1): 3021, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289269

RESUMEN

Magnetic domain walls are topological solitons whose internal structure is set by competing energies which sculpt them. In common ferromagnets, domain walls are known to be of either Bloch or Néel types. Little is established in the case of Mn3Sn, a triangular antiferromagnet with a large room-temperature anomalous Hall effect, where domain nucleation is triggered by a well-defined threshold magnetic field. Here, we show that the domain walls of this system generate an additional contribution to the Hall conductivity tensor and a transverse magnetization. The former is an electric field lying in the same plane with the magnetic field and electric current and therefore a planar Hall effect. We demonstrate that in-plane rotation of spins inside the domain wall would explain both observations and the clockwise or anticlockwise chirality of the walls depends on the history of the field orientation and can be controlled.

9.
Phys Rev Lett ; 122(3): 037001, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735415

RESUMEN

We have systematically studied physical properties of Ba(Fe_{0.97}Cr_{0.03})_{2}(As_{1-x}P_{x})_{2}, where superconductivity in BaFe_{2}(As_{1-x}P_{x})_{2} is fully suppressed by just 3% of Cr substitution of Fe. A quantum critical point is revealed at x∼0.42, where non-Fermi-liquid behaviors similar to those in BaFe_{2}(As_{1-x}P_{x})_{2} are observed. Neutron diffraction and inelastic neutron scattering measurements suggest that the quantum critical point is associated with the antiferromagnetic order, which is not of conventional spin-density-wave type as evidenced by the ω/T scaling of spin excitations. On the other hand, no divergence of low-temperature nematic susceptibility is observed when x is decreased to 0.42 from higher doping level, demonstrating that there are no nematic quantum critical fluctuations. Our results suggest that non-Fermi-liquid behaviors in iron-based superconductors can be solely resulted from the antiferromagnetic quantum critical fluctuations, which cast doubts on the role of nematic fluctuations played in the normal-state properties in iron-based superconductors.

10.
Phys Rev Lett ; 119(5): 056601, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949739

RESUMEN

We present a study of electric, thermal and thermoelectric response in noncollinear antiferromagnet Mn_{3}Sn, which hosts a large anomalous Hall effect (AHE). Berry curvature generates off-diagonal thermal (Righi-Leduc) and thermoelectric (Nernst) signals, which are detectable at room temperature and invertible with a small magnetic field. The thermal and electrical Hall conductivities respect the Wiedemann-Franz law, implying that the transverse currents induced by the Berry curvature are carried by Fermi surface quasiparticles. In contrast to conventional ferromagnets, the anomalous Lorenz number remains close to the Sommerfeld number over the whole temperature range of study, excluding any contribution by inelastic scattering and pointing to the Berry curvature as the unique source of AHE. The anomalous off-diagonal thermo-electric and Hall conductivities are strongly temperature dependent and their ratio is close to k_{B}/e.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...