Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 22437, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341952

RESUMEN

Knee osteoarthritis (KOA) is a common chronic joint disease globally. Synovial inflammation plays a pivotal role in its pathogenesis, preceding cartilage damage. Identifying biomarkers in osteoarthritic synovial tissues holds promise for early diagnosis and targeted interventions. Gene expression profiles were obtained from the Gene Expression Omnibus database. Subsequent analyses included differential expression gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) on the combined datasets. We performed functional enrichment analysis on the overlapping genes between DEGs and module genes and constructed a protein-protein interaction network. Using Cytoscape software, we identified hub genes related to the disease and conducted gene set enrichment analysis on these hub genes. The CIBERSORT algorithm was employed to evaluate the correlation between hub genes and the abundance of immune cells within tissues. Finally, Mendelian randomization analysis was utilized to assess the potential of these hub genes as biomarkers. We identified 46 differentially expressed genes (DEGs), comprising 20 upregulated and 26 downregulated genes. Using WGCNA, we constructed a gene co-expression network and selected the most relevant modules, resulting in 24 intersecting genes with the DEGs. KEGG enrichment analysis of the intersecting genes identified the IL-17 signaling pathway, associated with inflammation, as the most significant pathway. Cytoscape software was utilized to rank the candidate genes, with JUN, ATF3, FOSB, NR4A2, and IL6 emerging as the top five based on the Degree algorithm. A nomogram model incorporating these five genes, supported by ROC curve analysis, validated their diagnostic efficacy. Immune infiltration and correlation analysis revealed that macrophages were significantly associated with JUN (p < 0.01), FOSB (p < 0.01), and NR4A2 (p < 0.05). Additionally, T follicular helper cells showed significant associations with ATF3 (p < 0.05), FOSB (p < 0.05), and JUN (p < 0.05). Mendelian randomization analysis provided strong evidence linking JUN (IVW: OR = 0.910, p = 0.005) and IL6 (IVW: OR = 1.024, p = 0.026) with KOA. Through the utilization of various bioinformatics analysis methods, we have pinpointed key hub genes relevant to knee osteoarthritis. These findings hold promise for advancing pre-symptomatic diagnostic strategies and enhancing our understanding of the biological underpinnings behind knee osteoarthritis susceptibility genes.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Osteoartritis de la Rodilla , Mapas de Interacción de Proteínas , Humanos , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo , Biología Computacional/métodos , Mapas de Interacción de Proteínas/genética , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , Transcriptoma , Análisis de la Aleatorización Mendeliana
2.
Front Med (Lausanne) ; 11: 1382836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863887

RESUMEN

Background: Prior investigations have indicated associations between Knee Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin series and tumor necrosis factor-alpha (TNFα). To further elaborate on these findings, our investigation utilizes Mendelian randomization to explore the causal relationships between KOA and 91 inflammatory cytokines. Methods: This two-sample Mendelian randomization utilized genetic variations associated with KOA from a large, publicly accessible Genome-Wide Association Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. The genetic data for inflammatory cytokines were obtained from a GWAS summary involving 14,824 individuals of European ancestry. Causal relationships between exposures and outcomes were primarily investigated using the inverse variance weighted method. To enhance the robustness of the research results, other methods were combined to assist, such as weighted median, weighted model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO and leave one out, was also carried out. These different analytical methods are used to enhance the validity and reliability of the final results. Results: The results of Mendelian randomization indicated that Adenosine Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth factor (HFG) proteins are protective factors for KOA (IVWADA: OR = 0.862, 95% CI: 0.771-0.963, p = 0.008; IVWFGF5: OR = 0.850, 95% CI: 0.764-0.946, p = 0.003; IVWHFG: OR = 0.798, 95% CI: 0.642-0.991, p = 0.042), while Tumor necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. (IVWTNFα: OR = 1.319, 95% CI: 1.067-1.631, p = 0.011; IVWCSF1: OR = 1.389, 95% CI: 1.125-1.714, p = 0.002; IVWTWEAK: OR = 1.206, 95% CI: 1.016-1.431, p = 0.032). Conclusion: The six proteins identified in this study demonstrate a close association with the onset of KOA, offering valuable insights for future therapeutic interventions. These findings contribute to the growing understanding of KOA at the microscopic protein level, paving the way for potential targeted therapeutic approaches.

3.
Nucleic Acids Res ; 51(2): 952-965, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36620887

RESUMEN

In bacteria, expression of folate-related genes is controlled by the tetrahydrofolate (THF) riboswitch in response to specific binding of THF and its derivatives. Recently, a second class of THF riboswitches, named THF-II, was identified in Gram-negative bacteria, which exhibit distinct architecture from the previously characterized THF-I riboswitches found in Gram-positive bacteria. Here, we present the crystal structures of the ligand-bound THF-II riboswitch from Mesorhizobium loti. These structures exhibit a long rod-like fold stabilized by continuous base pair and base triplet stacking across two helices of P1 and P2 and their interconnecting ligand-bound binding pocket. The pterin moiety of the ligand docks into the binding pocket by forming hydrogen bonds with two highly conserved pyrimidines in J12 and J21, which resembles the hydrogen-bonding pattern at the ligand-binding site FAPK in the THF-I riboswitch. Using small-angle X-ray scattering and isothermal titration calorimetry, we further characterized the riboswitch in solution and reveal that Mg2+ is essential for pre-organization of the binding pocket for efficient ligand binding. RNase H cleavage assay indicates that ligand binding reduces accessibility of the ribosome binding site in the right arm of P1, thus down-regulating the expression of downstream genes. Together, these results provide mechanistic insights into translation regulation by the THF-II riboswitch.


Asunto(s)
Bacterias , Riboswitch , Emparejamiento Base , Ligandos , Conformación de Ácido Nucleico , Tetrahidrofolatos/metabolismo , Bacterias/genética
4.
Fundam Res ; 3(5): 727-737, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38933295

RESUMEN

RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.

5.
ACS Chem Biol ; 17(9): 2448-2460, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36069699

RESUMEN

Pulsed electron-electron double resonance (PELDOR) spectroscopy, X-ray scattering interferometry (XSI), and single-molecule Förster resonance energy transfer (smFRET) are molecular rulers that provide inter- or intramolecular pair-wise distance distributions in the nanometer range, thus being ideally suitable for structural and dynamic studies of biomolecules including RNAs. The prerequisite for such applications requires site-specific labeling of biomolecules with spin labels, gold nanoparticles, and fluorescent tags, respectively. Recently, site-specific labeling of large RNAs has been achieved by a combination of transcription of an expanded genetic alphabet containing A-T/G-C base pairs and NaM-TPT3 unnatural base pair (UBP) with post-transcriptional modifications at UBP bases by click chemistry or amine-NHS ester reactions. However, due to the bulky sizes of functional groups or labeling probes used, such strategies might cause structural perturbation and decrease the accuracy of distance measurements. Here, we synthesize an α-thiophosphorylated variant of rTPT3TP (rTPT3αS), which allows for post-transcriptional site-specific labeling of large RNAs at the internal α-phosphate backbone via maleimide-modified probes. Subsequent PELDOR, XSI, and smFRET measurements result in narrower distance distributions than labeling at the TPT3 base. The presented strategy provides a new route to empower the molecular rulers for structural and dynamic studies of large RNA and its complex.


Asunto(s)
Oro , Nanopartículas del Metal , Aminas , Espectroscopía de Resonancia por Spin del Electrón , Ésteres , Oro/química , Maleimidas , Fosfatos , ARN , Marcadores de Spin
6.
J Cancer ; 13(4): 1370-1384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281879

RESUMEN

Glypican-3 (GPC3) has become a compelling target for immunotherapy of hepatocellular carcinoma, including antibody-drug conjugate (ADC), and ADC-like immunotoxin. To investigate the impact of epitopes on the potency of ADCs, current study generated a large panel of chicken monoclonal antibodies (mAbs) that targeted 12 different and over-lapping epitopes on GPC3. These mAbs demonstrated a very high affinity with Kd values in the range of 10-9-10-14 M, and the highest affinity (Kd value of 0.0214 pM) was 40-fold higher than the previously generated high-affinity mAb YP7 (Kd value of 0.876 nM). Additionally, these mAbs exhibited excellent thermostability with Tm values in the range of 45-82 °C. As a proof-of-concept study for ADC, we made immunotoxins (scFv fused with PE24, the 24-kDa cytotoxic domain of Pseudomonas exotoxin A) based on these mAbs, and we found that immunotoxins targeting the N-lobe of GPC3 were overall much more potent than those targeting the C-lobe and other locations. One representative N-lobe-targeting immunotoxin J80A-PE24 demonstrated 3 to 13-fold more potency than the hitherto best immunotoxin HN3-PE24 that was previously developed. J80A-PE24 could suppress tumor growth much greater than HN3-PE24 in a xenograft mouse model. Combination of J80A-PE24 with an angiogenesis inhibitor FGF401 showed additive effect, which dramatically shrank tumor growth. Our work demonstrated that, due to high affinity, excellent thermostability and potency, chicken mAbs targeting the N-lobe of GPC3 are appealing candidates to develop potent ADCs for immunotherapy of liver cancer.

7.
Nat Commun ; 11(1): 5496, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127896

RESUMEN

Mechanical anisotropy is an essential property for many biomolecules to assume their structures, functions and applications, however, the mechanisms for their direction-dependent mechanical responses remain elusive. Herein, by using a single-molecule nanopore sensing technique, we explore the mechanisms of directional mechanical stability of the xrRNA1 RNA from ZIKA virus (ZIKV), which forms a complex ring-like architecture. We reveal extreme mechanical anisotropy in ZIKV xrRNA1 which highly depends on Mg2+ and the key tertiary interactions. The absence of Mg2+ and disruption of the key tertiary interactions strongly affect the structural integrity and attenuate mechanical anisotropy. The significance of ring structures in RNA mechanical anisotropy is further supported by steered molecular dynamics simulations in combination with force distribution analysis. We anticipate the ring structures can be used as key elements to build RNA-based nanostructures with controllable mechanical anisotropy for biomaterial and biomedical applications.


Asunto(s)
Fenómenos Bioquímicos , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , ARN Viral/química , Virus Zika/genética , Anisotropía , Humanos , Magnesio/metabolismo , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Viral/genética , Infección por el Virus Zika/virología
8.
FASEB J ; 34(10): 13548-13560, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32786125

RESUMEN

Angptl7 is a secreted and circulating cytokine that belongs to Angiopoietin-like family. The current knowledge about the function of Angptl7 is still limited, and its biological role is only marginally known, such as in the promotion of angiogenesis and inflammation. Here, we demonstrated that Angptl7 promotes insulin resistance and type 2 diabetes mellitus (T2DM). We found that the circulating Angptl7 levels in T2DM patient and mouse models were significantly elevated. Artificial overexpression of Angptl7 in hepatic cells inhibited glucose uptake and impaired insulin signaling pathway. Furthermore, in vivo overexpression of Angptl7 in experimental healthy mice also caused insulin resistance-like characteristics. Mechanistic studies revealed that Angptl7 can upregulate SOCS3 expression, leading to the IRS1 degradation in proteasome. Furthermore, over-expressed Angptl7 inhibited the phosphorylation of Akt and promoted the phosphorylation of ERK1/2, which was known to be associated with insulin resistance. Taken together, our study provided strong evidence that Angptl7 promotes insulin resistance and T2DM by multiple mechanisms, which made Angptl7 a new potential therapeutic target for treatment of insulin resistance and T2DM.


Asunto(s)
Proteínas Similares a la Angiopoyetina , Diabetes Mellitus Tipo 2/metabolismo , Hepatocitos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Anciano , Proteína 7 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/sangre , Proteínas Similares a la Angiopoyetina/fisiología , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...