Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Prolif ; 57(5): e13588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38124457

RESUMEN

'Requirements for Human Natural Killer Cells' is the latest set of guidelines on human NK cells in China, jointly drafted and agreed upon by experts from the Standards Committee of Chinese Society for Cell Biology. This standard specifies requirements for the human natural killer (NK) cells, including the technical requirements, test methods, test regulations, instructions for use, labeling requirements, packaging requirements, storage and transportation requirements, and waste disposal requirements of NK cells. This standard is applicable for the quality control of NK cells, derived from human tissues, or differentiated/transdifferentiated from stem cells. It was originally released by the Chinese Society for Cell Biology on 30 August, 2022. We hope that the publication of these guidelines will promote institutional establishment, acceptance, and execution of proper protocols and accelerate the international standardization of human NK cells for applications.


Asunto(s)
Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/citología , Humanos , China , Control de Calidad
2.
Cell Prolif ; 56(5): e13471, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37199039

RESUMEN

Robust allogeneic immune reactions after transplantation impede the translational pace of human embryonic stem cells (hESCs)-based therapies. Selective genetic editing of human leucocyte antigen (HLA) molecules has been proposed to generate hESCs with immunocompatibility, which, however, has not been specifically designed for the Chinese population yet. Herein, we explored the possibility of customizing immunocompatible hESCs based on Chinese HLA typing characteristics. We generated an immunocompatible hESC line by disrupting HLA-B, HLA-C, and CIITA genes while retaining HLA-A*11:01 (HLA-A*11:01-retained, HLA-A11R ), which covers ~21% of the Chinese population. The immunocompatibility of HLA-A11R hESCs was verified by in vitro co-culture and confirmed in humanized mice with established human immunity. Moreover, we precisely knocked an inducible caspase-9 suicide cassette into HLA-A11R hESCs (iC9-HLA-A11R ) to promote safety. Compared with wide-type hESCs, HLA-A11R hESC-derived endothelial cells elicited much weaker immune responses to human HLA-A11+ T cells, while maintaining HLA-I molecule-mediated inhibitory signals to natural killer (NK) cells. Additionally, iC9-HLA-A11R hESCs could be induced to undergo apoptosis efficiently by AP1903. Both cell lines displayed genomic integrity and low risks of off-target effects. In conclusion, we customized a pilot immunocompatible hESC cell line based on Chinese HLA typing characteristics with safety insurance. This approach provides a basis for establishment of a universal HLA-AR bank of hESCs covering broad populations worldwide and may speed up the clinical application of hESC-based therapies.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Animales , Ratones , Células Madre Embrionarias , Alelos , Antígeno HLA-A11/genética , Antígeno HLA-A11/metabolismo , Pueblos del Este de Asia , Células Endoteliales , Edición Génica , Antígenos HLA/genética , Histocompatibilidad , Diferenciación Celular
3.
Curr Cancer Drug Targets ; 23(10): 817-828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37171007

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC), one of the world's most prevalent malignancies, accounts for 90% of primary liver cancer cases. Recent studies have shown an increased expression of denticles E3 ubiquitin protein ligase homolog (DTL) in several different tumor types, but its function and regulatory mechanisms remain unclear. AIMS: This study aimed to investigate the expressions of the Cullin4 (CUL4) complex in HCC and elucidate the roles of DTL in HCC cells. METHODS: The relative expression of the CUL4 complex and its clinical significance were analyzed with The Cancer Genome Atlas (TCGA) data, and the level of DTL was confirmed by immunohistochemistry. The functions of DTL1 and upstream E2F1 were evaluated by a Western blot, MTT, transwell, and xenograft in HCC cell lines. RESULTS: The elevated mRNA expression of the CUL4 complex, including CUL4B, DDB1 (Damage Specific DNA Binding Protein 1), and DTL, was associated with the overall survival of HCC patients. We also found that the DTL protein was elevated in HCC tissues, and patients with highly expressed DTL and nucleus-located DTL had a poorer survival time. DTL knockdown significantly inhibited cancer proliferation, migration, and invasion. Further experiments showed that E2F1 was an upstream regulatory molecule of DTL, which was bound to the promoter of DTL, promoting the expression of DTL. CONCLUSION: The study results demonstrate that E2F1-DTL signaling promotes the growth, migration, and invasion of HCC cells, which provides new insights and a potential biological target for future HCC therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
4.
Cell Biosci ; 12(1): 77, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641966

RESUMEN

BACKGROUND: Activating transcription factor-2 (ATF2) is a member of the basic leucine zipper family of DNA-binding proteins, which exhibits both oncogenic and tumor suppression activity in different tumors. However, the molecular mechanism of its dual function in cancer chemotherapy especially in gastric cancer has still not been elucidated. METHODS: The protein expression and location of ATF2 in gastric cancer tissues was detected with immunohistochemistry assay, and the clinical significance was analyzed using TCGA and GEO database. The activation and impact of ATF2 in cisplatin treated cells were evaluated with western blot, incucyte live cell analysis, clone formation and tumor xenografts assays. Interaction between ATF2 and p53 was confirmed with immunoprecipitation and GST-pull down. Potential molecular mechanism of ATF2 in different p53 status cells was analyzed with RNA sequencing and real-time quantitative PCR. RESULTS: ATF2 mainly located in the nucleus of cancer cells, higher ATF2 level was associated with poor five-year survival of gastric patients, especially in those undergone chemotherapy treatment. Cisplatin treatment significantly activated ATF2 in p53 mutant cells. ATF2 could interact with the trans-activation domain of p53 and enhance cisplatin sensitivity in p53 wild type cell lines, while promoted cell survival in mutant p53 cancer cells by affecting ERK1/2 pathway. CONCLUSIONS: This study confirmed the effect of ATF2 on cisplatin sensitivity was associated with the functional status of p53 in gastric cancer cells. Integrated analysis of ATF2 expression and P53 status could be used to evaluate the chemotherapy sensitivity and prognosis of gastric cancer patients.

5.
Environ Res ; 205: 112494, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890595

RESUMEN

As a typical brominated flame retardants (BFRs), 2,4,6-tribromophenol (TBP) has serious hazard to the environmental health and its environmental fate has attracted considerable attention. Dehalogenation reaction plays key role in microbial TBP degradation and detoxification. So far, several halophenols-degrading enzymes have been reported to transform their substrate by oxidative dehalogenation; however, the molecular and biochemistry characterization of microbial hydrolytic dehalogenation is limited. In this study, Cupriavidus sp. CNP-8 with high TBP degradation activity was found to degrade TBP via an obviously differnet pathway as compared to other reported TBP-degraders. The transcription of hnp genes were significantly upregulated with TBP stimulation, indicating their involvment in TBP degradation. Enzymatic assays with 18O-labeling experiments showed that HnpAB, a two-component FAD-dependent monooxygenase, transformed TBP via consecutive oxidative and hydrolytic debromination reactions with the formation of 6-bromo-1,2,4-benzenetriol (BBT) as the ring-cleavage substrate. The function of the BBT ring-cleavage enzyme (HnpC) was also characterized both in vitro and in vivo. This finding provides new molecular mechanism of microbial detoxification of TBP and novel information of the environmental fate of this BFRs. Furthermore, to investigate the frequency of this novel dehalogenation mechanism in microbes, we also analyzed the distribution as well as the genetic structure of the hnpABC cluster by comparative genomics. Although hnpA homolog is distributed in several bacterial genera including Cupriavidus, Paraburkholderia, Variovorax and Streptomyces, the complete hnpABC cluster is only retrieved from Cupriavidus and strictly conservative in the genomes. This indicated that Cupriavidus have unique evolutionary pattern in acquiring the hnpABC to degrade TBP and its analogs, enhancing our understanding of the microbial adaptive evolution in halophenols-contaminated environment.


Asunto(s)
Retardadores de Llama , Fenoles , Biodegradación Ambiental , Retardadores de Llama/metabolismo , Estrés Oxidativo , Fenoles/metabolismo
6.
Environ Pollut ; 258: 113703, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31818627

RESUMEN

2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h-1, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Km of 3.9 ± 1.4 µM and a kcat/Km of 0.12 ± 0.04 µΜ-1 min-1. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.


Asunto(s)
Biodegradación Ambiental , Cupriavidus/metabolismo , Nitrofenoles/metabolismo , Cinética , Filogenia
7.
Appl Microbiol Biotechnol ; 103(18): 7741-7750, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31372705

RESUMEN

2-Chloro-4-nitrophenol (2C4NP) is the most common chlorinated nitrophenol pollutant, and its environmental fate is of great concern. Cupriavidus sp. CNP-8, a Gram-negative bacterium, has been reported to degrade 2C4NP via the 1,2,4-benzenetriol (BT) pathway, significantly different from the (chloro)hydroquinone pathways reported in all other Gram-negative 2C4NP-utilizers. Herein, the BT pathway of the catabolism of 2C4NP in this strain was characterized at the molecular, biochemical, and genetic levels. The hnp gene cluster was suspected to be involved in the catabolism of 2C4NP because the hnp genes are significantly upregulated in the 2C4NP-induced strain CNP-8 compared to the uninduced strain. HnpAB, a two-component FAD-dependent monooxygenase, catalyzes the conversion of 2C4NP to BT via chloro-1,4-benzoquinone, with a Km of 2.7 ± 1.1 µΜ and a kcat/Km of 0.17 ± 0.03 µΜ-1 min-1. hnpA is necessary for strain CNP-8 to utilize 2C4NP in vivo. HnpC, a BT 1,2-dioxygenase, was proved to catalyze BT ring-cleavage with formation of maleylacetate by HPLC-MS analysis. Phylogenetic analysis indicated that HnpA likely has different evolutionary origin compared to other functionally identified 2C4NP monooxygenases. To our knowledge, this is the first report revealing the catabolic mechanism of 2C4NP via the BT pathway in a Gram-negative bacterium, increasing our knowledge of the catabolic diversity for microbial 2C4NP degradation at the molecular and biochemical level.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus/enzimología , Hidroquinonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Nitrofenoles/metabolismo , Proteínas Bacterianas/genética , Benzoquinonas/metabolismo , Biodegradación Ambiental , Cupriavidus/genética , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/genética , Familia de Multigenes , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...