RESUMEN
Purpose: Acupuncture has been recognized as an effective and safe alternative therapy for migraine, but its central mechanism has not yet been adequately explained. Meanwhile, research into the clinical efficacy and central mechanism of true acupuncture (TA) and sham acupuncture (SA) is lacking. It is necessary to investigate whether TA has better efficacy than SA, and how they achieve different effects. This study aims to evaluate the efficacy of TA and SA, observe the brain response caused by TA and SA, and further investigate the central nervous mechanism of TA and SA treatment for patients with migraine. Patients and Methods: This is a randomized controlled neuroimaging trial combining acupuncture treatment with functional magnetic resonance imaging, with patients and outcome assessors blinded. A total of 60 patients with migraine will be randomly allocated to receive 12 sessions of either TA or SA treatments (three sessions per week for 4 weeks), and 30 healthy participants will be recruited as the healthy control (HC) group. Outcome assessment and neuroimaging will be conducted before and after the entire intervention. A headache diary and questionnaires of life quality and psychological properties will be used to evaluate clinical efficacy. Multimodal magnetic resonance imagining data analysis will be used to investigate the central mechanism of TA or SA in treating migraine. Pearson's correlation analysis will be used to reveal the relationship between the brain response and clinical improvements. Conclusion: The results of this study will reveal the brain response to TA and SA in patients with migraine and contribute to further expanding the knowledge of their central mechanism. Study Registration: This trial has been approved by the ethics committee of Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine (DZMEC-KY-2020-38) and registered in the Chinese Clinical Trial Registry (registration number ChiCTR2000033995).
RESUMEN
INTRODUCTION: Migraine is a common headache disorder. Many studies have used magnetic resonance imaging (MRI) to explore the possible pathogenesis of migraine, but they have not reached consistent conclusions and lack rigorous multiple comparison correction. Thus, this study investigates the mechanisms of migraine development from the perspective of altered functional connectivity (FC) in brain regions by using data-driven and regions of interest (ROI)-based approaches. METHODS: Resting-state functional MRI data were collected from 30 patients with migraine and 40 healthy controls (HCs) matched for age, gender, and years of education. For the data-driven method, we used a voxel-mirrored homotopic connectivity (VMHC) approach to compare the FC between the patients and HCs. For the ROI-based method, significant differences in VMHC maps between the patients and HCs were defined as ROI. The seed-based approach further revealed significant differences in FC between the seeds and the other brain regions. Furthermore, the correlations between abnormal FC and clinical characteristics of patients were investigated. A rigorous multiple comparison correction was used with false discovery rate and permutation test (5000 times). RESULTS: In comparison with the controls group, patients showed enhanced VMHC in the bilateral thalamus. We also observed enhanced FC between the left thalamus and the left superior frontal gyrus, and increased FC between the right thalamus and the left middle frontal gyrus (Brodmann area 45 and Brodmann area 8) in patients. Further analysis showed that the FC values in the left superior frontal gyrus and left middle frontal gyrus were negatively corrected with visual analogue scale scores or attack times for headaches. CONCLUSIONS: Patients with migraine showed altered VMHC in the bilateral thalamus, and abnormal FC of bilateral thalamus and other brain regions. The abnormalities in thalamic FC are a likely mechanism for the development of migraine. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2000033995. Registered on 20 June 2020.