Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 34(2): 1324-1333, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37615763

RESUMEN

OBJECTIVES: Artificial intelligence (AI) systems can diagnose thyroid nodules with similar or better performance than radiologists. Little is known about how this performance compares with that achieved through fine needle aspiration (FNA). This study aims to compare the diagnostic yields of FNA cytopathology alone and combined with BRAFV600E mutation analysis and an AI diagnostic system. METHODS: The ultrasound images of 637 thyroid nodules were collected in three hospitals. The diagnostic efficacies of an AI diagnostic system, FNA-based cytopathology, and BRAFV600E mutation analysis were evaluated in terms of sensitivity, specificity, accuracy, and the κ coefficient with respect to the gold standard, defined by postsurgical pathology and consistent benign outcomes from two combined FNA and mutation analysis examinations performed with a half-year interval. RESULTS: The malignancy threshold for the AI system was selected according to the Youden index from a retrospective cohort of 346 nodules and then applied to a prospective cohort of 291 nodules. The combination of FNA cytopathology according to the Bethesda criteria and BRAFV600E mutation analysis showed no significant difference from the AI system in terms of accuracy for either cohort in our multicenter study. In addition, for 45 included indeterminate Bethesda category III and IV nodules, the accuracy, sensitivity, and specificity of the AI system were 84.44%, 95.45%, and 73.91%, respectively. CONCLUSIONS: The AI diagnostic system showed similar diagnostic performance to FNA cytopathology combined with BRAFV600E mutation analysis. Given its advantages in terms of operability, time efficiency, non-invasiveness, and the wide availability of ultrasonography, it provides a new alternative for thyroid nodule diagnosis. CLINICAL RELEVANCE STATEMENT: Thyroid ultrasonic artificial intelligence shows statistically equivalent performance for thyroid nodule diagnosis to FNA cytopathology combined with BRAFV600E mutation analysis. It can be widely applied in hospitals and clinics to assist radiologists in thyroid nodule screening and is expected to reduce the need for relatively invasive FNA biopsies. KEY POINTS: • In a retrospective cohort of 346 nodules, the evaluated artificial intelligence (AI) system did not significantly differ from fine needle aspiration (FNA) cytopathology alone and combined with gene mutation analysis in accuracy. • In a prospective multicenter cohort of 291 nodules, the accuracy of the AI diagnostic system was not significantly different from that of FNA cytopathology either alone or combined with gene mutation analysis. • For 45 indeterminate Bethesda category III and IV nodules, the AI system did not perform significantly differently from BRAFV600E mutation analysis.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/genética , Biopsia con Aguja Fina/métodos , Neoplasias de la Tiroides/patología , Estudios Retrospectivos , Estudios Prospectivos , Inteligencia Artificial
2.
Int J Surg ; 110(1): 372-384, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916932

RESUMEN

BACKGROUND: Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies with different risk levels. However, preoperative risk assessment of PTC is still a challenge in the worldwide. Here, the authors first report a Preoperative Risk Assessment Classifier for PTC (PRAC-PTC) by multidimensional features including clinical indicators, immune indices, genetic feature, and proteomics. MATERIALS AND METHODS: The 558 patients collected from June 2013 to November 2020 were allocated to three groups: the discovery set [274 patients, 274 formalin-fixed paraffin-embedded (FFPE)], the retrospective test set (166 patients, 166 FFPE), and the prospective test set (118 patients, 118 fine-needle aspiration). Proteomic profiling was conducted by FFPE and fine-needle aspiration tissues from the patients. Preoperative clinical information and blood immunological indices were collected. The BRAFV600E mutation were detected by the amplification refractory mutation system. RESULTS: The authors developed a machine learning model of 17 variables based on the multidimensional features of 274 PTC patients from a retrospective cohort. The PRAC-PTC achieved areas under the curve (AUC) of 0.925 in the discovery set and was validated externally by blinded analyses in a retrospective cohort of 166 PTC patients (0.787 AUC) and a prospective cohort of 118 PTC patients (0.799 AUC) from two independent clinical centres. Meanwhile, the preoperative predictive risk effectiveness of clinicians was improved with the assistance of PRAC-PTC, and the accuracies reached at 84.4% (95% CI: 82.9-84.4) and 83.5% (95% CI: 82.2-84.2) in the retrospective and prospective test sets, respectively. CONCLUSION: This study demonstrated that the PRAC-PTC that integrating clinical data, gene mutation information, immune indices, high-throughput proteomics and machine learning technology in multicentre retrospective and prospective clinical cohorts can effectively stratify the preoperative risk of PTC and may decrease unnecessary surgery or overtreatment.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/cirugía , Estudios Retrospectivos , Estudios Prospectivos , Proteómica , Carcinoma Papilar/cirugía , Aprendizaje Automático , Medición de Riesgo , Proteínas Proto-Oncogénicas B-raf/genética
3.
Eur J Med Chem ; 265: 116080, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142510

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.


Asunto(s)
Esclerosis Múltiple , Factores de Transcripción , Ratas , Ratones , Animales , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Dominios Proteicos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
J Med Chem ; 66(13): 8725-8744, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37382379

RESUMEN

Neuropathic pain (NP) is an intolerable pain syndrome that arises from continuous inflammation and excitability after nerve injury. Only a few NP therapeutics are currently available, and all of them do not provide adequate pain relief. Herein, we report the discovery of a selective and potent inhibitor of the bromodomain and extra-terminal (BET) proteins for reducing neuroinflammation and excitability to treat NP. Starting with the screening hit 1 from an in-house compound library, iterative optimization resulted in the potent BET inhibitor DDO-8926 with a unique binding mode and a novel chemical structure. DDO-8926 exhibits excellent BET selectivity and favorable drug-like properties. In mice with spared nerve injury, DDO-8926 significantly alleviated mechanical hypersensitivity by inhibiting pro-inflammatory cytokine expression and reducing excitability. Collectively, these results implicate that DDO-8926 is a promising agent for the treatment of NP.


Asunto(s)
Descubrimiento de Drogas , Neuralgia , Ratones , Animales , Descubrimiento de Drogas/métodos , Dominios Proteicos , Citocinas , Piridinas/farmacología , Piridinas/uso terapéutico , Neuralgia/tratamiento farmacológico
5.
Pathol Oncol Res ; 29: 1610785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741963

RESUMEN

The intramuscular subtype of nodular fasciitis (NF) is rare with lesions normally not more than 2 cm in size and characterized by pseudosarcomatous morphology. We report a case of a 27-year-old man with a large-size intramuscular NF. The patient came for treatment complaining of an increasingly enlarged mass in the left upper arm for 4 months. Magnetic resonance imaging (MRI) confirmed the presence of a well-defined tumor measuring 5 cm within the outer edge of the middle humerus. Microscopically, the neoplasm was rich in fibroblasts and myofibroblasts in an interlaced pattern with high mitotic index and evident multinuclear giant cells. Erythrocyte extravasation was easily seen in the stroma. The tumor border was infiltrative. Immunohistochemically, the tumor cells were positive for smooth muscle actin (SMA) and negative for cytokeratin, desmin, H-Caldesmon, CD34, S100, ALK, and ß-catenin. Fibrosarcoma was highly suspected by histopathological and immunohistochemical examination. Molecular detection demonstrated evidence of ubiquitin-specific peptidase 6 (USP6) gene rearrangement in this tumor. Based on the findings, the tumor was diagnosed as intramuscular NF. At 56 months after the initial surgery, the patient had recovered with no evidence of recurrence or metastasis. Large-size intramuscular NF is very rare and easily overdiagnosed as malignant tumor due to its obvious pseudosarcomatoid pathological features. USP6 gene rearrangement detection can effectively avoid this major misdiagnosis.


Asunto(s)
Fascitis , Reordenamiento Génico , Masculino , Humanos , Adulto , Proteínas Proto-Oncogénicas/genética , Ubiquitina Tiolesterasa/genética , Hibridación Fluorescente in Situ , Fascitis/diagnóstico , Fascitis/genética , Fascitis/patología
6.
Eur J Med Chem ; 250: 115198, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805946

RESUMEN

Janus tyrosine kinase (JAK) inhibitors have been on the market for several years, but their use is limited by drug resistance and intolerable side effects. Herein, we propose a novel strategy of JAK tyrosine kinase (TK) and pseudokinase (PK) domain co-inhibition system to consolidate robust JAK inhibition and on-demand activation. A photoexcited prodrug PAT-SIL-TG-1&AT exhibits the synergy effects of TK-PK co-inhibition and enable the spatiotemporal control of JAK2 signaling. The hypoxia-activated prodrug HAT-SIL-TG-1&AT significantly inhibited HEL cells proliferation and downregulated phosphorylated STAT3/5 under hypoxic conditions. Importantly, HAT-SIL-TG-1&AT showed synergistic antitumor effects and selectively inhibited the JAK-STAT signaling in tumor tissues in vivo. This work demonstrates a viable solution to achieve superior JAK2 inhibition, and provides an inspiration for other kinases containing PK domain.


Asunto(s)
Profármacos , Tirosina , Tirosina/farmacología , Profármacos/farmacología , Janus Quinasa 2/metabolismo , Transducción de Señal , Fosforilación , Factor de Transcripción STAT3 , Proliferación Celular
7.
Front Genet ; 13: 998258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353111

RESUMEN

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system with poor prognosis. Recent studies have revealed that N7-methylguanosine (m7G) methylation is a widespread modification occurring in RNA. But the expression of m7G methylation-related genes in LUAD and their correlations with prognosis are still unclear. In this study, we found 12 m7G methylation-related regulators with differential expression between LUAD and normal lung tissues. According to differentially expressed genes (DEGs), all LUAD cases were separated into two subtypes. The prognostic value of each m7G methylation-related gene for survival was evaluated to construct a multigene signature using The Cancer Genome Atlas (TCGA) cohort. Finally, an m7G methylation-related prognostic signature based on three genes was built to classify LUAD patients into two risk groups. Patients in the high-risk group showed significantly reduced overall survival (OS) when compared with patients in the low-risk group (p < 0.05). The receiver operating characteristic (ROC) curve analysis confirmed the predictive capacity of the signature. The Gene Ontology (GO) functional annotation analysis disclosed that chromosome homeostasis plays an important role in this process. The gene set enrichment analysis (ssGSEA) implied that the immune status was decreased in the high-risk group. To sum up, m7G methylation-related genes play a vital role in tumor immunity and the related signature is a reliable predictor for LUAD prognosis.

8.
Cancers (Basel) ; 14(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35804832

RESUMEN

The underlying mechanism of post-operative relapse of non-small cell lung cancer (NSCLC) remains poorly understood. We enrolled 57 stage I NSCLC patients with or without relapse and performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) on available primary and recurrent tumors, as well as on matched tumor-adjacent tissues (TATs). The WES analysis revealed that primary tumors from patients with relapse were enriched with USH2A mutation and 2q31.1 amplification. RNA-seq data showed that the relapse risk was associated with aberrant immune response and metabolism in the microenvironment of primary lesions. TATs from the patients with relapse showed an immunosuppression state. Moreover, recurrent lesions exhibited downregulated immune response compared with their paired primary tumors. Genomic and transcriptomic features were further subjected to build a prediction model classifying patients into groups with different relapse risks. We show that the recurrence risk of stage I NSCLC could be ascribed to the altered immune and metabolic microenvironment. TATs might be affected by cancer cells and facilitate the invasion of tumors. The immune microenvironment in the recurrent lesions is suppressed. Patients with a high risk of relapse need active post-operative intervention.

9.
Eur J Med Chem ; 238: 114423, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544982

RESUMEN

Sepsis has long been a major health problem worldwide. It threatens the lives of hospitalized patients and has been one of the leading causes of death in hospitalized patients over the past decades. BRD4 has been regarded as a potential target for sepsis therapy, for its critical role in the transcriptional expression of NF-κB pathway-dependent inflammatory factors. In this study, compound 1 was obtained through virtual screening, and candidate compound 27 was obtained through several rounds of iterative SAR analysis. 27 decreased LPS-induced NO production and expression of the pro-inflammatory factors IL-6, IL-1ß and TNF-α. In vivo, 27 effectively protected mice from LPS-induced sepsis, increased survival rate and decreased the level of pro-inflammatory factors in serum. Collectively, we reported here 27, a BRD4 inhibitor with a new scaffold, as a potential candidate for the treatment of sepsis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Sepsis , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Humanos , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , Sepsis/tratamiento farmacológico , Factores de Transcripción/antagonistas & inhibidores
10.
Cancer Cell Int ; 22(1): 199, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606813

RESUMEN

BACKGROUND: Several studies have revealed that N6-methyladenosine (m6A) regulation is involved in various biological processes and cancer progression. Nevertheless, the potential effects of m6A modifications in the tumor immune microenvironment (TIME) and on immune regulation in pancreatic adenocarcinoma (PAAD) remains unclear. METHODS: A consensus clustering algorithm was used to identify different m6A modification patterns and construct an m6A-associated gene signature based on 23 m6A regulators in PAAD. The CIBERSORT and ssGSEA algorithms were used to estimate the components of the immune cells in each sample. The PCA algorithm was used to develop the m6Ascore system for the evaluation of m6A modification patterns in each sample. RESULTS: Two m6A modification patterns with different biological properties and prognoses were identified in 176 PAAD patient samples. The features of TIME between the two patterns were similar, with two definite immune phenotypes: immune-inflamed and immune-excluded. Based on the m6A phenotype-associated signature genes, we constructed an m6Ascore system to investigate the m6A modification pattern of each sample, profile the dissection of physiological processes, immune infiltration, clinical prognosis, immunotherapy, and genetic variation. Patients with low m6Ascore scores had better clinical outcomes, enhanced immune infiltration, and lower expression of immunotherapeutic drug targets, such as CD274 and PDCD1LG2. Further research indicated that the m6Ascore and tumor mutation burden were significantly correlated, and patients with low m6Ascore had higher mutation rates in SMAD4 and TTN. Moreover, TNFRSF21 was significantly upregulated in PAAD tumor tissues and cell lines. Lower expression of TNFRSF21 had a prominent advantage in survival and was correlated with a low level of immune infiltration. PAAD samples with different TNFRSF21 expression levels showed significantly distinct sensitivities to chemotherapeutic agents. CONCLUSIONS: This study revealed that m6A modification patterns could play an important role in the diversity and complexity of TIME, and the m6Ascore system could serve as an independent and powerful prognostic biomarker and is latently related to PAAD immunotherapies. Quantitative determination of m6A modification patterns in individual patients will be instrumental in mapping the TIME landscape and further optimizing precision immunotherapy.

11.
Front Mol Biosci ; 9: 807418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187083

RESUMEN

HCC is one of the most common types of malignancies worldwide and the fourth-leading cause of cancer deaths. Thus, there is an urgent need to search for novel targeted therapies in HCC. 186 m6a-related lncRNAs were screened for subsequent analysis. Two distinct m6A modification clusters were identified to be associated with the overall prognosis in TCGA-LIHC based on the m6A-related lncRNAs profiling, followed by univariate Cox regression analysis. In addition, four m6A-related lncRNAs prognostic signatures were developed and validated that could predict the OS of HCC patients, followed by univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. Moreover, four m6A-related lncRNAs were identified to be related to HCC prognosis. ESTIMATE was used to evaluate the stromal score, immune score, ESTIMATE score, and tumor purity of each HCC sample. ssGSEA was performed to identify the enrichment levels of 29 immune signatures in each sample. Finally, quantitative real-time polymerase chain reaction shown that KDM4A-AS1, BACE1-AS, and NRAV expressions were upregulated in HCC patients. We proved that our m6A-related lncRNAs signature had powerful and robust ability for predicting OS of different HCC subgroups.

12.
Front Oncol ; 11: 652193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221970

RESUMEN

BACKGROUND: Micropapillary adenocarcinoma is one of the most aggressive histologic subtypes of lung adenocarcinoma (LADC), and even a minor proportion of micropapillary component (MPC) within the LADC could contribute to poor prognosis. Comprehensive analysis of genetic and immunological features of LADC with different percentages of MPC would help better understand cancer biology of this LADC subtype and direct future treatments. METHODS: We performed next-generation sequencing (NGS) for a discovery cohort of 43 LADC patients whose tumors were micro-dissected to separate MPC and non-MPC lesions and a reference cohort of 113 LADC patients. MPC-enriched genetic alterations that were detected in the discovery cohort were then confirmed using a validation cohort of 183 LADC patients. Immunological staining was also conducted on the MPC-containing samples in the discovery cohort. RESULTS: Tumors with a higher percentage of MPC tended to harbor more tumor mutation burdens (TMBs) and chromosome instability (CIN). Some rare genetic events may serve as the genetic landscape to drive micropapillary tumor progression. Specifically, alterations in transcription termination factor 1 (TTF1), brain-specific angiogenesis inhibitor 3 (BAI3), mammalian target of rapamycin (MTOR), and cyclin-dependent kinase inhibitor 2A (CDKN2A) were cross-validated to be enriched in MPC-contained LADC. Additionally, tumors with a higher percentage of MPC were associated with a higher percentage of CD4+, CD8+, and PD-L1+ staining, and some genetic changes that were enriched in MPC, including MET amplification and MTOR mutation, were correlated with increased PD-L1 expression. CONCLUSION: We identified multiple novel MPC-enriched genetic changes that could help us understand the nature of this aggressive cancer subtype. High MPC tumors tended to have elevated levels of TMBs, T cell infiltration, and immunosuppression than low MPC tumors, implying the potential link between MPC content and sensitivity to immunotherapy.

13.
Acta Pharmacol Sin ; 41(6): 852-865, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31969689

RESUMEN

Vonoprazan is characterized as having a long-lasting antisecretory effect on gastric acid. In this study we developed a physiologically based pharmacokinetic (PBPK)-pharmacodynamic (PD) model linking to stomach to simultaneously predict vonoprazan pharmacokinetics and its antisecretory effects following administration to rats, dogs, and humans based on in vitro parameters. The vonoprazan disposition in the stomach was illustrated using a limited-membrane model. In vitro metabolic and transport parameters were derived from hepatic microsomes and Caco-2 cells, respectively. We found the most predicted plasma concentrations and pharmacokinetic parameters of vonoprazan in rats, dogs and humans were within twofold errors of the observed data. Free vonoprazan concentrations (fu × C2) in the stomach were simulated and linked to the antisecretory effects of the drug (I) (increases in pH or acid output) using the fomula dI/dt = k × fu × C2 × (Imax - I) - kd × I. The vonoprazan dissociation rate constant kd (0.00246 min-1) and inhibition index KI (35 nM) for H+/K+-ATPase were obtained from literatures. The vonoprazan-H+/K+-ATPase binding rate constant k was 0.07028 min-1· µM-1 using ratio of kd to KI. The predicted antisecretory effects were consistent with the observations following intravenous administration to rats (0.7 and 1.0 mg/kg), oral administration to dogs (0.3 and 1.0 mg/kg) and oral single dose or multidose to humans (20, 30, and 40 mg). Simulations showed that vonoprazan concentrations in stomach were 1000-fold higher than those in the plasma at 24 h following administration to human. Vonoprazan pharmacokinetics and its antisecretory effects may be predicted from in vitro data using the PBPK-PD model of the stomach. These findings may highlight 24-h antisecretory effects of vonoprazan in humans following single-dose or the sustained inhibition throughout each 24-h dosing interval during multidose administration.


Asunto(s)
Ácido Gástrico/metabolismo , Modelos Biológicos , Pirroles/metabolismo , Pirroles/farmacocinética , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Transporte Biológico , Células CACO-2 , Perros , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Cinética , Masculino , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Pirroles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Sulfonamidas/administración & dosificación , Distribución Tisular
14.
Front Pharmacol ; 11: 593982, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519456

RESUMEN

Background and Objective: Clopidogrel (CLOP) is commonly used in coronary artery disease (CAD) patients with or without diabetes (DM), but these patients often suffer CLOP resistance, especially those with diabetes. This study was aimed to develop a physiologically-based pharmacokinetic-pharmacodynamic (PBPK-PD) model to describe the pharmacokinetics and pharmacodynamics of clopidogrel active metabolite (CLOP-AM) in CAD patients with or without DM. Methods: The PBPK-PD model was first established and validated in healthy subjects and then in CAD patients with or without DM. The influences of CYP2C19, CYP2C9, CYP3A4, carboxylesterase 1 (CES1), gastrointestinal transit rates (K t,i) and platelets response to CLOP-AM (k irre) on predicted pharmacokinetics and pharmacodynamics were investigated, followed with their individual and integrated effects on CLOP-AM pharmacokinetics due to changes in DM status. Results: Most predictions fell within 0.5-2.0 folds of observations, indicating successful predictions. Sensitivity analysis showed that contributions of interested factors to pharmacodynamics were CES1> k irre> K t,i> CYP2C19 > CYP3A4> CYP2C9. Mimicked analysis showed that the decreased exposure of CLOP-AM by DM was mainly attributed to increased CES1 activity, followed by decreased CYP2C19 activity. Conclusion: The pharmacokinetics and pharmacodynamics of CLOP-AM were successfully predicted using the developed PBPK-PD model. Clopidogrel resistance by DM was the integrated effects of altered K t,i, CYP2C19, CYP3A4, CES1 and k irre.

15.
Front Mol Biosci ; 7: 599142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33681288

RESUMEN

We aimed to explore the tumor mutational burden (TMB) and immune infiltration in HCC and investigate new biomarkers for immunotherapy. Transcriptome and gene mutation data were downloaded from the GDC portal, including 374 HCC samples and 50 matched normal samples. Furthermore, we divided the samples into high and low TMB groups, and analyzed the differential genes between them with GO, KEGG, and GSEA. Cibersort was used to assess the immune cell infiltration in the samples. Finally, univariate and multivariate Cox regression analyses were performed to identify differential genes related to TMB and immune infiltration, and a risk prediction model was constructed. We found 10 frequently mutated genes, including TP53, TTN, CTNNB1, MUC16, ALB, PCLO, MUC, APOB, RYR2, and ABCA. Pathway analysis indicated that these TMB-related differential genes were mainly enriched in PI3K-AKT. Cibersort analysis showed that memory B cells (p = 0.02), CD8+ T cells (p = 0.09), CD4+ memory activated T cells (p = 0.07), and neutrophils (p = 0.06) demonstrated a difference in immune infiltration between high and low TMB groups. On multivariate analysis, GABRA3 (p = 0.05), CECR7 (p < 0.001), TRIM16 (p = 0.003), and IL7R (p = 0.04) were associated with TMB and immune infiltration. The risk prediction model had an area under the curve (AUC) of 0.69, suggesting that patients with low risk had better survival outcomes. Our study demonstrated for the first time that CECR7, GABRA3, IL7R, and TRIM16L were associated with TMB and promoted antitumor immunity in HCC.

16.
Artif Cells Nanomed Biotechnol ; 48(1): 336-344, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31884829

RESUMEN

Cytoplasmic p27 plays an important role in regulating the cell cycle. Recent studies have revealed p27 protein translocation from the nucleus to the cytoplasm in many tumour cells. The aim of this study was to investigate the role and molecular mechanisms of cytoplasmic p27 in the progression of nasopharyngeal carcinoma (NPC) and to explore its prognostic value. We found increased cytoplasmic p27 expression by immunohistochemistry in NPC tissues, and its expression level was significantly correlated with the T classification and TNM clinical stage of NPC. The survival rate was significantly lower for NPC patients with cytoplasmic p27 immunopositivity than for NPC patients with cytoplasmic p27 immunonegativity, and cytoplasmic p27 was an independent risk factor that affected the prognosis of patients with NPC. Cytoplasmic p27 promoted the proliferation, cell cycle progression, migration, and invasion of NPC cells, increased Bim-1 and Twist1 protein levels, and decreased RhoA-GTP level. Collectively, these findings suggest that cytoplasmic relocalization of p27 is involved in the pathogenesis of NPC and is closely related to the unfavourable prognosis of patients with NPC. Therefore, cytoplasmic p27 might be a useful prognostic factor and potential therapeutic target for patients with NPC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoplasma/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Citoplasma/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patología , Pronóstico
17.
Oncol Lett ; 17(1): 502-507, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30655793

RESUMEN

G protein-coupled receptor, family C, group 5 member A (GPRC5A) is a retinoid-inducible protein, which has been characterized as a tumor-suppressor gene in lung cancer. The present study further examined GPRC5A expression in non-small cell lung cancer (NSCLC) for any association with the clinical features and treatment outcomes of patients with NSCLC. A total of 30 paired NSCLC tumor and adjacent normal tissues were analyzed for the detection of GPRC5A mRNA and protein using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. Immunohistochemistry was performed to determine the GPRC5A expression levels in 110 NSCLC and 60 para-tumor tissues. The results confirmed significantly lower expression levels of GPRC5A in NSCLC tumors compared with the corresponding noncancerous tissues (P<0.001). Lost GPRC5A expression was significantly associated with the tumor histological type (P=0.008), poor tumor differentiation (P<0.001) and tumor-node-metastasis (TNM) stage (P<0.001). Kaplan-Meier curve analysis revealed that patients with NSCLC with low GPRC5A expression tumors had a worse prognosis compared with those with high GPRC5A expression tumors (P=0.010). The results of multivariate Cox analysis further suggested that low GPRC5A expression was an independent prognostic factor for patients with NSCLC (P<0.001). The results of this study suggest GPRC5A expression has clinical potential as a prognostic biomarker for patients with NSCLC.

18.
Acta Pharmacol Sin ; 38(2): 233-240, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27840411

RESUMEN

Few effective therapeutic options are currently available for the treatment of non-small cell lung cancer (NSCLC) with brain metastases (BM). Recent evidence shows that NSCLC patients with BMs respond well to afatinib, but little is known about the underlying mechanisms. In this study, we evaluated the efficacy of afatinib in treatment of BMs in mice and investigated whether afatinib could actively penetrate the brain-blood barrier and bind to its target. NSCLC BM model was established in nude mice by intracerebral injection of PC-9.luc cells. The tumors were measured weekly using in vivo quantitative bioluminescence. The mice are administrated afatinib (15, 30 mg·kg-1·d-1, ig) for 14 d. The antitumor efficacy of afatinib was determined by tumor growth inhibition (TGI), which was calculated as [1-(change of tumor volume in treatment group/control group)×100]. Pharmacokinetic characteristics were measure in mice receiving a single dose of afatinib (30 mg/kg, ig). Pharmacodynamics of afatinib was also assessed by detecting the expression of pEGFR (Tyr1068) in brain tumor foci using immunohistochemistry. Administration of afatinib (15, 30 mg·kg-1·d-1) dose-dependently inhibited PC-9 tumor growth in the brain with a TGI of 90.2% and 105%, respectively, on d 14. After administration of afatinib (30 mg/kg), the plasma concentration of afatinib was 91.4±31.2 nmol/L at 0.5 h, reached a peak (417.1±119.9 nmol/L) at 1 h, and was still detected after 24 h. The cerebrospinal fluid (CSF) concentrations followed a similar pattern. The T1/2 values of afatinib in plasma and CSF were 5.0 and 3.7 h, respectively. The AUC(0-24 h) values for plasma and CSF were 2375.5 and 29.1 nmol/h, respectively. The plasma and CSF concentrations were correlated (r=0.844, P<0.01). Pharmacodynamics study showed that the expression levels of pEGFR were reduced by 90% 1 h after afatinib administration. The Emax was 86.5%, and the EC50 was 0.26 nmol/L. A positive correlation between CSF concentrations and pEGFR modulation was revealed. Afatinib penetrates the BBB in NSCLC BM mice and contributes to the brain tumor response. The CSF exposure level is correlated with the plasma level, which in turn is correlated with the modulation of pEGFR in the tumor tissues. The results support for the potential application of afatinib in NSCLC patients with BMs.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Quinazolinas/farmacocinética , Quinazolinas/uso terapéutico , Afatinib , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Líquido Cefalorraquídeo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Quinazolinas/sangre , Quinazolinas/líquido cefalorraquídeo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 7(31): 50477-50489, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27409166

RESUMEN

Activating and resistance mutations in the tyrosine kinase domain of several oncogenes are frequently associated with non-small cell lung carcinoma (NSCLC). In this study we assessed the frequency, type and abundance of EGFR, KRAS, BRAF, TP53 and ALK mutations in tumour specimens from 184 patients with early and late stage disease using single molecule amplification and re-sequencing technology (SMART). Based on modelling of EGFR mutations, the detection sensitivity of the SMART assay was at least 0.1%. Benchmarking EGFR mutation detection against the gold standard ARMS-PCR assay, SMART assay had a sensitivity and specificity of 98.7% and 99.0%. Amongst the 184 samples, EGFR mutations were the most prevalent (59.9%), followed by KRAS (16.9%), TP53 (12.7%), EML4-ALK fusions (6.3%) and BRAF (4.2%) mutations. The abundance and types of mutations in tumour specimens were extremely heterogeneous, involving either monoclonal (51.6%) or polyclonal (12.6%) mutation events. At the clinical level, although the spectrum of tumour mutation(s) was unique to each patient, the overall patterns in early or advanced stage disease were relatively similar. Based on these findings, we propose that personalized profiling and quantitation of clinically significant oncogenic mutations will allow better classification of patients according to tumour characteristics and provide clinicians with important ancillary information for treatment decision-making.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Anciano , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Análisis Mutacional de ADN , Sistemas de Apoyo a Decisiones Clínicas , Receptores ErbB/genética , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Tirosina Quinasas Receptoras/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/genética
20.
Mol Cancer Ther ; 15(5): 842-53, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26839308

RESUMEN

Lung cancer is a leading cause of cancer-related mortality worldwide, and concurrent chemoradiotherapy has been explored as a therapeutic option. However, the chemotherapeutic agents cannot be administered for most patients at full doses safely with radical doses of thoracic radiation, and further optimizations of the chemotherapy regimen to be given with radiation are needed. In this study, we examined the effects of suberoylanilide hydroxamic acid (SAHA) and cisplatin on DNA damage repairs, and determined the combination effects of SAHA and cisplatin on human non-small cell lung cancer (NSCLC) cells in response to treatment of ionizing radiation (IR), and on tumor growth of lung cancer H460 xenografts receiving radiotherapy. We also investigated the potential differentiation effect of SAHA and its consequences on cancer cell invasion. Our results showed that SAHA and cisplatin compromise distinct DNA damage repair pathways, and treatment with SAHA enhanced synergistic radiosensitization effects of cisplatin in established NSCLC cell lines in a p53-independent manner, and decreased the DNA damage repair capability in cisplatin-treated primary NSCLC tumor tissues in response to IR. SAHA combined with cisplatin also significantly increased inhibitory effect of radiotherapy on tumor growth in the mouse xenograft model. In addition, SAHA can induce differentiation in stem cell-like cancer cell population, reduce tumorigenicity, and decrease invasiveness of human lung cancer cells. In conclusion, our data suggest a potential clinical impact for SAHA as a radiosensitizer and as a part of a chemoradiotherapy regimen for NSCLC. Mol Cancer Ther; 15(5); 842-53. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/farmacología , Ácidos Hidroxámicos/farmacología , Neoplasias Pulmonares/patología , Tolerancia a Radiación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Ratones , Transducción de Señal/efectos de los fármacos , Vorinostat , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA