RESUMEN
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.
RESUMEN
Ischemia reperfusion (I/R) is a common pathological process which occurs mostly in organs like the heart, brain, kidney, and lung. The injury caused by I/R gradually becomes one of the main causes of fatal diseases, which is an urgent clinical problem to be solved. Although great progress has been made in therapeutic methods, including surgical, drug, gene therapy, and transplant therapy for I/R injury, the development of effective methods to cure the injury remains a worldwide challenge. In recent years, exosomes have attracted much attention for their important roles in immune response, antigen presentation, cell migration, cell differentiation, and tumor invasion. Meanwhile, exosomes have been shown to have great potential in the treatment of I/R injury in organs. The study of the exosome-mediated signaling pathway can not only help to reveal the mechanism behind exosomes promoting reperfusion injury recovery, but also provide a theoretical basis for the clinical application of exosomes. Here, we review the research progress in utilizing various exosomes from different cell types to promote the healing of I/R injury, focusing on the classical signaling pathways such as PI3K/Akt, NF-κB, Nrf2, PTEN, Wnt, MAPK, toll-like receptor, and AMPK. The results suggest that exosomes regulate these signaling pathways to reduce oxidative stress, regulate immune responses, decrease the expression of inflammatory cytokines, and promote tissue repair, making exosomes a competitive emerging vector for treating I/R damage in organs.
RESUMEN
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
RESUMEN
Inflammatory dysfunction and angiogenesis inhibition are two main factors leading to the delayed healing of diabetic wounds. Hydrogels with anti-inflammatory and angiogenesis-promoting effects have been considered as promising wound care materials. Herein, a salvianolic acid B (SAB)-loaded hyaluronic acid (HA) self-healing hydrogel (HA/SAB) with anti-inflammatory and pro-angiogenesis capacities for diabetic wound healing is reported. The HA hydrogel was prepared via the covalent cross-linking of aldehyde groups in oxidized HA (OHA) and hydrazide groups in adipic dihydrazide (ADH)-modified HA (HA-ADH) with the formation of reversible acylhydrazone bonds. The obtained HA hydrogel exhibited multiple favorable properties such as porous structures, excellent self-healing properties, a sustainable release capacity of SAB, as well as excellent cytocompatibility. In addition, the effects of the SAB-loaded HA self-healing hydrogel were investigated via a full-thickness skin defect model using diabetic rats. The HA/SAB hydrogel showed enhanced skin regeneration effects with accelerated wound closure, shorter remaining dermal space length, thicker granulation tissue formation, and more collagen deposition. Furthermore, reduced inflammatory response and enhanced vascularization were found with HA/SAB2.5 hydrogel-treated wounds, indicating that the hydrogel promotes diabetic wound healing through the promotion of anti-inflammation and angiogenesis. Our results suggest that the fabricated SAB-loaded HA self-healing hydrogel is promising as a wound dressing for the treatment of diabetic wounds.
Asunto(s)
Diabetes Mellitus Experimental , Hidrogeles , Ratas , Animales , Hidrogeles/química , Ácido Hialurónico/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéuticoRESUMEN
Impaired healing of diabetic wounds harms patients' quality of life and even leads to disability and death, which is an urgent issue to be solved clinically. Despite the great progress that has been achieved, it remains a worldwide challenge to develop effective therapeutic treatments for diabetic wounds. Recently, exosomes have attracted special attention because they can be involved in immune response, antigen presentation, cell migration, cell differentiation, tumor invasion and other processes. Meanwhile, exosomes have been proven to hold great potential in the treatment of diabetic wounds. Mechanistic studies of exosomes based on signaling pathways could not only help to uncover the mechanisms by which exosomes promote diabetic wound healing but could also provide a theoretical basis for the clinical application of exosomes. Herein, our mini-review aims to summarize the progress of research on the use of various exosomes derived from different cell types to promote diabetic wound healing, with a focus on the classical signaling pathways, including PI3K/Akt, Wnt, NF-κB, MAPK, Notch, Nrf2, HIF-1α/VEGF and TGF-ß/Smad. The results show that exosomes could regulate these signaling pathways to down-regulate inflammation, reduce oxidative stress, increase angiogenesis, promote fibroblast proliferation, induce re-epithelization and inhibit scar formation, making exosomes attractive candidates for the treatment of diabetic wounds.