Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Front Pharmacol ; 15: 1417372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104394

RESUMEN

Objective: To investigate the anti-inflammatory activity and mechanism of Baicalin derivative (Baicalin butyl ester, BE). Methods: BE was synthesized and identified using UV-Vis spectroscopy, FT-IR spectroscopy, mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods. Its anti-inflammatory potential was explored by an in vitro inflammation model. Network pharmacology was employed to predict the anti-inflammatory targets of BE, construct protein-protein interaction (PPI) networks, and analysis topological features and KEGG pathway enrichment. Additionally, molecular docking was conducted to evaluate the binding affinity between BE and its core targets. qRT-PCR analysis was conducted to validate the network pharmacology results. The organizational efficiency was further evaluated through octanol-water partition coefficient and transmembrane activity analysis. Results: UV-Vis, FT-IR, MS, and HPLC analyses confirmed the successfully synthesis of BE with a high purity of 93.75%. In vitro anti-inflammatory research showed that BE could more effectively suppress the expression of NO, COX-2, IL-6, IL-1ß, and iNOS. Network pharmacology and in vitro experiments validated that BE's anti-inflammatory effects was mediated through the suppression of SRC, HSP90AA1, PIK3CA, JAK2, AKT1, and NF-κB via PI3K-AKT pathway. Molecular docking results revealed that the binding affinities of BA to the core targets were lower than those of BE. The Log p-value of BE (1.7) was markedly higher than that of BA (-0.5). Furthermore, BE accumulated in cells at a level approximately 200 times greater than BA. Conclusion: BE exhibits stronger anti-inflammatory activity relative to BA, possibly attributed to its better lipid solubility and cellular penetration capabilities. The anti-inflammatory mechanism of BE may be mediated through the PI3K-AKT pathway.

2.
IET Syst Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138838

RESUMEN

For the multistage progression of prostate cancer (PCa) and resistance to immunotherapy, tumour-associated macrophage is an essential contributor. Although immunotherapy is an important and promising treatment modality for cancer, most patients with PCa are not responsive towards it. In addition to exploring new therapeutic targets, it is imperative to identify highly immunotherapy-sensitive individuals. This research aimed to establish a signature risk model, which derived from the macrophage, to assess immunotherapeutic responses and predict prognosis. Data from the UCSC-XENA, GEO and TISCH databases were extracted for analysis. Based on both single-cell datasets and bulk transcriptome profiles, a macrophage-related score (MRS) consisting of the 10-gene panel was constructed using the gene set variation analysis. MRS was highly correlated with hypoxia, angiogenesis, and epithelial-mesenchymal transition, suggesting its potential as a risk indicator. Moreover, poor immunotherapy responses and worse prognostic performance were observed in the high-MRS group of various immunotherapy cohorts. Additionally, APOE, one of the constituent genes of the MRS, affected the polarisation of macrophages. In particular, the reduced level of M2 macrophage and tumour progression suppression were observed in PCa xenografts which implanted in Apolipoprotein E-knockout mice. The constructed MRS has the potential as a robust prognostic prediction tool, and can aid in the treatment selection of PCa, especially immunotherapy options.

3.
Front Public Health ; 12: 1430256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109151

RESUMEN

Background: Online psychological surveys allow for swift data collection among college students, thus providing a foundation for psychological interventions, particularly during emergent public health events. However, the association between online survey completion behaviors and offline psychological symptoms has yet to be explored. Methods: A large-scale web-based survey was conducted from December 31, 2022, to January 7, 2023, involving 22,624 participants. Psychological symptoms were assessed using standardized measures, while the time taken to complete the survey and the time of completion were recorded by the online survey platform. Results: As the time duration increased, the prevalence of anxiety, depression, insomnia, and PTSD also increased significantly (P for trend < 0.001). The highest odds ratios were observed in the longer duration group. Only a longer duration was significantly associated with PTSD. The time period for completing the questionnaire from 7 p.m. to 10 p.m. was found to be significantly linked with anxiety symptoms and depression symptoms. Conversely, completing the questionnaire at other times was specifically associated with anxiety symptoms and insomnia symptoms. The prolonged duration needed to complete the questionnaire was more closely related to the comorbidity of anxiety, depression, and insomnia than to the comorbidity of those symptoms with PTSD. When questionnaires were completed during other times, specifically referring to the late-night and early morning hours, individuals were more likely to exhibit comorbid symptoms of insomnia. Conclusion: The study identified the specific associations between time durations, time points for completing online survey, and psychological symptoms/comorbidity among college students. Further exploration of their causal relationships and the underlying mechanisms is warranted.


Asunto(s)
Ansiedad , Depresión , Internet , Trastornos del Inicio y del Mantenimiento del Sueño , Estudiantes , Humanos , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , Femenino , Masculino , China/epidemiología , Encuestas y Cuestionarios , Universidades , Ansiedad/epidemiología , Depresión/epidemiología , Adulto Joven , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Factores de Tiempo , Adolescente , Trastornos por Estrés Postraumático/epidemiología , Adulto , Prevalencia
4.
Phytomedicine ; 132: 155859, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972239

RESUMEN

BACKGROUND: Acute lung injury (ALI) has received considerable attention in the field of critical care as it can lead to high mortality rates. Polygala tenuifolia, a traditional Chinese medicine with strong expectorant properties, can be used to treat pneumonia. Owing to the complexity of its composition, the main active ingredient is not yet known. Thus, there is a need to identify its constituent compounds and mechanism of action in the treatment of ALI using advanced technological means. PURPOSE: We investigated the anti-inflammatory mechanism and constituent compounds with regard to the effect of P. tenuifolia Willd. extract (EPT) in lipopolysaccharide (LPS)-induced ALI in vivo and in vitro. METHODS: The UHPLC-Q-Exactive Orbitrap MS technology was used to investigate the chemical profile of EPT. Network pharmacology was used to predict the targets and pathways of action of EPT in ALI, and molecular docking was used to validate the binding of polygalacic acid to Toll-like receptor (TLR) 4. The main compounds were determined using LC-MS. A rat model of LPS-induced ALI was established, and THP-1 cells were stimulated with LPS and adenosine triphosphate (ATP) to construct an in vitro model. Pathological changes were observed using hematoxylin and eosin staining, Wright-Giemsa staining, and immunohistochemistry. The expression of inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) was determined using enzyme-linked immunosorbent assay, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The LPS + ATP-induced inflammation model in THP-1 cells was used to verify the in vivo experimental results. RESULTS: Ninety-nine compounds were identified or tentatively deduced from EPT. Using network pharmacology, we found that TLR4/NF-κB may be a relevant pathway for the prevention and treatment of ALI by EPT. Polygalacic acid in EPT may be a potential active ingredient. EPT could alleviate LPS-induced histopathological lung damage and reduce the wet/dry lung weight ratio in the rat model of ALI. Moreover, EPT decreased the white blood cell and neutrophil counts in the bronchoalveolar lavage fluid and decreased the expression of genes and proteins of relevant inflammatory factors (NE, MPO, Ly-6 G, TNF-α, IL-1ß, IL-6, and iNOS) in lung tissues. It also increased the expression of endothelial-type nitric oxide synthase expression. Western blotting confirmed that EPT may affect TLR4/NF-κB and NLRP3 signaling pathways in vivo. Similar results were obtained in THP-1 cells. CONCLUSION: EPT reduced the release of inflammatory factors by affecting TLR4/NF-κB and NLRP3 signaling pathways, thereby attenuating the inflammatory response of ALI. Polygalacic acid is the likely compounds responsible for these effects.

5.
Nucleic Acids Res ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041409

RESUMEN

The BisI family of restriction endonucleases is unique in requiring multiple methylated or hydroxymethylated cytosine residues within a short recognition sequence (GCNGC), and in cleaving directly within this sequence, rather than at a distance. Here, we report that the number of modified cytosines that are required for cleavage can be tuned by the salt concentration. We present crystal structures of two members of the BisI family, NhoI and Eco15I_Ntd (N-terminal domain of Eco15I), in the absence of DNA and in specific complexes with tetra-methylated GCNGC target DNA. The structures show that NhoI and Eco15I_Ntd sense modified cytosine bases in the context of double-stranded DNA (dsDNA) without base flipping. In the co-crystal structures of NhoI and Eco15I_Ntd with DNA, the internal methyl groups (G5mCNGC) interact with the side chains of an (H/R)(V/I/T/M) di-amino acid motif near the C-terminus of the distal enzyme subunit and arginine residue from the proximal subunit. The external methyl groups (GCNG5mC) interact with the proximal enzyme subunit, mostly through main chain contacts. Surface plasmon resonance analysis for Eco15I_Ntd shows that the internal and external methyl binding pockets contribute about equally to sensing of cytosine methyl groups.

6.
iScience ; 27(6): 110015, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868189

RESUMEN

Cardiac damage is widely present in patients with metabolic diseases, but the exact pathophysiological mechanisms involved remain unclear. The porcine heart is an ideal material for cardiovascular research due to its similarities to the human heart. This study evaluated pathological features and performed single-nucleus RNA sequencing (snRNA-seq) on myocardial samples from both wild-type and metabolic disease-susceptible transgenic pigs (previously established). We found that transgenic pigs exhibited lipid metabolism disturbances and myocardial injury after a high-fat high-sucrose diet intervention. snRNA-seq reveals the cellular landscape of healthy and metabolically disturbed pig hearts and identifies the major cardiac cell populations affected by metabolic diseases. Within metabolic disorder hearts, metabolically active cardiomyocytes exhibited impaired function and reduced abundance. Moreover, massive numbers of reparative LYVE1+ macrophages were lost. Additionally, proinflammatory endothelial cells were activated with high expression of multiple proinflammatory cytokines. Our findings provide insights into the cellular mechanisms of metabolic disease-induced myocardial injury.

7.
Food Funct ; 15(13): 7136-7147, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38887927

RESUMEN

Zinc (Zn) is an important trace element; it is involved in the regulation and maintenance of many physiological functions in organisms and has anti-inflammatory and antioxidant properties. Chronic gastritis is closely associated with damage to the gastric mucosa, which is detrimental to the health of humans and animals. There are few studies on the effects of zinc on, for example, gastric mucosal damage, oxidative stress, inflammation and cell death in mice. Therefore, we established in vivo and in vitro models of inflammatory injury and investigated the effects of zinc supplementation in C57BL/6 mice and Ges-1 cells and examined the expression of factors associated with oxidative stress, inflammation and cell death. In this study, the results of in vivo and in vitro experiments showed that reactive oxygen species (ROS) levels increased after sodium salicylate exposure. Malondialdehyde levels increased, the activity of the antioxidant enzymes catalase and superoxide dismutase decreased, and the activity of glutathione decreased. The NF-κB signaling pathway was activated, the levels of proinflammatory factors (TNF-α, IL-1ß, and IL-6) increased, and the expression of cell death-related factors (Bax, Bcl-2, Caspase3, Caspase7, Caspase9, RIP1, RIP3, and MLKL) increased. Zinc supplementation attenuated the level of oxidative stress and reduced the level of inflammation and cell death. Our study indicated that sodium salicylate induced the production of large amounts of reactive oxygen species and activated the NF-κB pathway, leading to inflammatory damage and cell death in the mouse stomach. Zinc supplementation modulated the ROS/NF-κB pathway, reduced the level of oxidative stress, and attenuated inflammation and cell death in the mouse stomach and Ges-1 cells.


Asunto(s)
Suplementos Dietéticos , Gastritis , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transducción de Señal , Zinc , Animales , Humanos , Masculino , Ratones , Antioxidantes/farmacología , Línea Celular , Modelos Animales de Enfermedad , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efectos de los fármacos , Gastritis/metabolismo , Gastritis/tratamiento farmacológico , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Zinc/farmacología
8.
Discov Oncol ; 15(1): 207, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833013

RESUMEN

BACKGROUND: Dysregulation of zinc homeostasis is widely recognized as a hallmark feature of prostate cancer (PCa) based on the compelling clinical and experimental evidence. Nevertheless, the implications of zinc dyshomeostasis in PCa remains largely unexplored. METHODS: In this research, the zinc homeostasis pattern subtype (ZHPS) was constructed according to the profile of zinc homeostasis genes. The identified subtypes were assessed for their immune functions, mutational landscapes, biological peculiarities and drug susceptibility. Subsequently, we developed the optimal signature, known as the zinc homeostasis-related risk score (ZHRRS), using the approach won out in multifariously machine learning algorithms. Eventually, clinical specimens, Bayesian network inference and single-cell sequencing were used to excavate the underlying mechanisms of MT1A in PCa. RESULTS: The zinc dyshomeostasis subgroup, ZHPS2, possessed a markedly worse prognosis than ZHPS1. Moreover, ZHPS2 demonstrated a more conspicuous genomic instability and better therapeutic responses to docetaxel and olaparib than ZHPS1. Compared with traditional clinicopathological characteristics and 35 published signatures, ZHRRS displayed a significantly improved accuracy in prognosis prediction. The diagnostic value of MT1A in PCa was substantiated through analysis of clinical samples. Additionally, we inferred and established the regulatory network of MT1A to elucidate its biological mechanisms. CONCLUSIONS: The ZHPS classifier and ZHRRS model hold great potential as clinical applications for improving outcomes of PCa patients.

9.
Environ Sci Pollut Res Int ; 31(25): 37337-37355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771539

RESUMEN

Groundwater plays a pivotal role in the water resources of Shicheng County; however, the issue of excessive fluoride content in groundwater and its associated health risks often goes unnoticed. Groundwater assumes a crucial role in the hydrological dynamics of Shicheng County; nevertheless, the matter concerning elevated levels of fluoride within groundwater and its accompanying health hazards frequently evades attention. The hydrogeochemical analysis, obscure comprehensive water quality assessment based on cloud model, and probabilistic human health risk assessment using Monte Carlo simulation were conducted on 34 collected water samples. The findings indicate that the predominant groundwater hydrochemical types are SO4·Cl-Na and HCO3-Na. The processes of rock weathering and cation exchange play crucial roles in influencing water chemistry. Groundwater samples generally exhibit elevated concentrations of F-, surpassing the drinking water standard, primarily attributed to mineral dissolution. The concentrations of F- in more than 52.94% and 23.53% of the groundwater samples exceeded the acceptable non-carcinogenic risk limits for children and adults, respectively. Considering the inherent uncertainty in model parameters, it is anticipated that both children and adults will have a probability exceeding 49.36% and 30.50%, respectively, of being exposed to elevated levels of F ions in groundwater. The utilization of stochastic simulations, in contrast to deterministic methods, enables a more precise depiction of health risks. The outcomes derived from this investigation possess the potential to assist policymakers in formulating strategies aimed at ensuring the provision of secure domestic water supplies.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Medición de Riesgo , Humanos , Contaminantes Químicos del Agua/análisis , China , Calidad del Agua , Fluoruros/análisis , Agua Potable/química , Método de Montecarlo
10.
Kidney Dis (Basel) ; 10(2): 97-106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38751794

RESUMEN

Introduction: Unsaturated fatty acids play an essential role in the progression of diabetic nephropathy (DN). However, previous studies were mainly focused on the role of individual unsaturated fatty acid. The serum unsaturated fatty acid patterns (FAPs) in patients with DN remain to be determined. Methods: A total of 135 patients with DN (DN group) and 322 patients with type II diabetes without nephropathy (non-DN group) were included in this study. Clinical data, serum levels of unsaturated fatty acids, and other laboratory indicators were collected. Multivariate logistic regression was applied to identify risk factors for serum unsaturated fatty acid level in both groups. Serum unsaturated fatty acids were subjected to factor analysis to identify distinct FAPs. Multivariable logistic regression was employed to assess the risk of DN associated with different serum FAPs. Results: After adjusting for confounders, three types of unsaturated fatty acid including C20:5 (eicosapentaenoic acid [EPA]), C22:6 (docosahexaenoic acid [DHA]), and C22:5 n-3 (docosapentaenoic acid n-3) were significantly associated with DN in the population. The odds ratios (ORs) (95% confidence interval [CI]) of DN were 0.583 (0.374, 0.908), 0.826 (0.716, 0.954), and 0.513 (0.298, 0.883), respectively. Factor analysis revealed five major FAPs, among which FAP2 (enriched with EPA and DHA) exhibited a significant inverse association with DN. In the multivariate-adjusted model, the OR (95% CI) was 0.678 (0.493, 0.933). Additionally, a combination of DHA and EPA enriched in FAP2 further decreased extracellular matrix production induced by transforming growth factor beta 1 in podocytes and tubular cells. Conclusions: Our findings suggest that FAP2 which is enriched with DHA and EPA is associated with a reduced risk of DN. This highlights the potential of targeting FAP2 for the patients with DN.

11.
Biomol Biomed ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38752985

RESUMEN

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is one of the most frequent oncogenes. However, there are limited treatment options due to its intracellular expression. To address this, we developed a novel bispecific T-cell engager (BiTE) antibody targeting HLA-A2/KRAS G12V complex and CD3 (HLA-G12V/CD3 BiTE). We examined its specific binding to tumor cells and T cells, as well as its anti-tumor effects in vivo. HLA-G12V/CD3 BiTE was expressed in Escherichia coli and its binding affinities to CD3 and HLA-A2/KRAS G12V were measured by flow cytometry, along with T-cell activation. In a xenograft pancreatic tumor model, the HLA-G12V/CD3 BiTE's anti-tumor effects were assessed through tumor growth, survival time, and safety. Our results demonstrated specific binding of HLA-G12V/CD3 BiTE to tumor cells with an HLA-A2/KRAS G12V mutation and T cells. The HLA-G12V/CD3 BiTE also activated T-cells in the presence of tumor cells in vitro. HLA-G12V/CD3 BiTE in vivo testing showed delayed tumor growth without severe toxicity to major organs and prolonged mouse survival. This study highlights the potential of constructing BiTEs recognizing an HLA-peptide complex and providing a novel therapy for cancer treatment targeting the intracellular tumor antigen.

12.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711050

RESUMEN

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Asunto(s)
Vías Biosintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Glicoles/metabolismo , Lisina/metabolismo , Lisina/biosíntesis , Alcohol Deshidrogenasa/metabolismo , Transaminasas/metabolismo , Transaminasas/genética , Carboxiliasas/metabolismo
13.
Autoimmun Rev ; 23(6): 103574, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782083

RESUMEN

Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.

15.
Opt Express ; 32(6): 9397-9404, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571175

RESUMEN

This research proposed a novel pulse-shaping design for directly shaping distorted pulses after the amplification. Based on the principle of the design we made a pulse shaper. With this pulse shaper, we successfully manipulate the pulse's leading edge and width to achieve an 'M'-shaped waveform in an amplification system. Comparative experiments were conducted within this system to compare the output with and without the integration of the pulse shaper. The results show a significant suppression of the nonlinear effect upon adding the pulse shaper. This flexible and effective pulse shaper can be easily integrated into a high-power all-fiber system, supplying the capability to realize the desired output waveform and enhance the spectral quality.

16.
Front Microbiol ; 15: 1286822, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655080

RESUMEN

Winged helix (wH) domains, also termed winged helix-turn-helix (wHTH) domains, are widespread in all kingdoms of life and have diverse roles. In the context of DNA binding and DNA modification sensing, some eukaryotic wH domains are known as sensors of non-methylated CpG. In contrast, the prokaryotic wH domains in DpnI and HhiV4I act as sensors of adenine methylation in the 6mApT (N6-methyladenine, 6mA, or N6mA) context. DNA-binding modes and interactions with the probed dinucleotide are vastly different in the two cases. Here, we show that the role of the wH domain as a sensor of adenine methylation is widespread in prokaryotes. We present previously uncharacterized examples of PD-(D/E)XK-wH (FcyTI, Psp4BI), PUA-wH-HNH (HtuIII), wH-GIY-YIG (Ahi29725I, Apa233I), and PLD-wH (Aba4572I, CbaI) fusion endonucleases that sense adenine methylation in the Dam+ Gm6ATC sequence contexts. Representatives of the wH domain endonuclease fusion families with the exception of the PLD-wH family could be purified, and an in vitro preference for adenine methylation in the Dam context could be demonstrated. Like most other modification-dependent restriction endonucleases (MDREs, also called type IV restriction systems), the new fusion endonucleases except those in the PD-(D/E)XK-wH family cleave close to but outside the recognition sequence. Taken together, our data illustrate the widespread combinatorial use of prokaryotic wH domains as adenine methylation readers. Other potential 6mA sensors in modified DNA are also discussed.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38685696

RESUMEN

OBJECTIVE: Giant cell arteritis (GCA) is characterized by granulomatous inflammation of the medium- and large-sized arteries accompanied by remodeling of the vessel wall. Fibroblast activation protein alpha (FAP) is a serine protease that promotes both inflammation and fibrosis. Here, we investigated the plasma levels and vascular expression of FAP in GCA. METHODS: Plasma FAP levels were measured with enzyme-linked immunosorbent assay in treatment-naive patients with GCA (n = 60) and polymyalgia rheumatica (PMR) (n = 63) compared with age- and sex-matched healthy controls (HCs) (n = 42) and during follow-up, including treatment-free remission (TFR). Inflamed temporal artery biopsies (TABs) of patients with GCA (n = 9), noninflamed TABs (n = 14), and aorta samples from GCA-related (n = 9) and atherosclerosis-related aneurysm (n = 11) were stained for FAP using immunohistochemistry. Immunofluorescence staining was performed for fibroblasts (CD90), macrophages (CD68/CD206/folate receptor beta), vascular smooth muscle cells (desmin), myofibroblasts (α-smooth muscle actin), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). RESULTS: Baseline plasma FAP levels were significantly lower in patients with GCA compared with patients with PMR and HCs and inversely correlated with systemic markers of inflammation and angiogenesis. FAP levels decreased even further at 3 months on remission in patients with GCA and gradually increased to the level of HCs in TFR. FAP expression was increased in inflamed TABs and aorta of patients with GCA compared with control tissues. FAP was abundantly expressed in fibroblasts and macrophages. Some of the FAP+ fibroblasts expressed IL-6 and MMP-9. CONCLUSION: FAP expression in GCA is clearly modulated both in plasma and in vessels. FAP may be involved in the inflammatory and remodeling processes in GCA and have utility as a target for imaging and therapeutic intervention.

18.
Front Nutr ; 11: 1368459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650638

RESUMEN

Objective: Given the high prevalence of non-alcoholic fatty liver disease (NAFLD) and its potential to progress to liver fibrosis, it is crucial to identify the presence of NAFLD in patients to guide their subsequent management. However, the current availability of non-invasive biomarkers for NAFLD remains limited. Therefore, further investigation is needed to identify and develop non-invasive biomarkers for NAFLD. Methods: A retrospective analysis was conducted on 11,883 patients admitted to the Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2016 to December 2019 and divided into NAFLD and non-NAFLD groups. Anthropometric and laboratory examination data were collected. The correlations between variables and NAFLD were evaluated using the student's t-test or Mann-Whitney U test and binary logistic regression analysis. The predictive ability of these variables for NAFLD was assessed using the areas under the curves (AUCs) of receiver operating characteristics. Results: Among the included patients, 3,872 (32.58%) were diagnosed with NAFLD, with 386 (9.97%) individuals having liver fibrosis. Patients with NAFLD exhibited a higher proportion of males, elevated body mass index (BMI), and increased likelihood of hypertension, diabetes mellitus, and atherosclerosis. Logistic regression analysis identified the neutrophil to albumin ratio (NAR) as the most promising novel inflammation biomarkers, with the highest AUC value of 0.701, a cut-off value of 0.797, sensitivity of 69.40%, and specificity of 66.00% in identifying the risk of NAFLD. Moreover, NAR demonstrated superior predictive value in identifying NAFLD patients at risk of liver fibrosis, with an AUC value of 0.795, sensitivity of 71.30%, and specificity of 73.60% when NAR reached 1.285. Conclusion: These findings highlight that the novel inflammatory biomarker, NAR, is a convenient and easily accessible non-invasive predictor for NAFLD and NAFLD with liver fibrosis.

19.
Sci Rep ; 14(1): 9886, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688995

RESUMEN

Dual-energy cone beam computed tomography (DE-CBCT) has been shown to provide more information and improve performance compared to a conventional single energy spectrum CBCT. Here we report a low-cost DE-CBCT by spectral filtration of a carbon nanotube x-ray source array. The x-ray photons from two focal spots were filtered respectively by a low and a high energy filter. Projection images were collected by alternatively activating the two beams while the source array and detector rotated around the object, and were processed by a one-step materials decomposition and reconstruction method. The performance of the DE-CBCT scanner was evaluated by imaging a water-equivalent plastic phantom with inserts containing known densities of calcium or iodine and an anthropomorphic head phantom with dental implants. A mean energy separation of 15.5 keV was achieved at acceptable dose rates and imaging time. Accurate materials quantification was obtained by materials decomposition. Metal artifacts were reduced in the virtual monoenergetic images synthesized at high energies. The results demonstrated the feasibility of high quality DE-CBCT imaging by spectral filtration without using either an energy sensitive detector or rapid high voltage switching.

20.
J Hazard Mater ; 471: 134333, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643581

RESUMEN

Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.


Asunto(s)
Bacterias , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Zea mays , Contaminantes del Suelo/toxicidad , Suelo/química , Microplásticos/toxicidad , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Cloruro de Sodio/toxicidad , Poliésteres , Salinidad , Polietileno , Microbiota/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...