Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Heliyon ; 10(16): e36063, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229522

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system. Forskolin (FSK) is a plant-derived diterpene with excellent immunomodulatory properties and has not been systematically reported for treating MS. This study investigated the therapeutic effects of FSK on cellular and animal MS models and preliminarily explored related mechanisms. The results showed that FSK suppressed the inflammatory response, reduced the expression of STEAP4, and relieved iron deposition in BV-2 cells pretreated by LPS at the cellular level. Meanwhile, at the animal level, FSK treatment halted the progression of experimental autoimmune encephalomyelitis (EAE), alleviated the damage at the lesion sites, reduced the concentration of proinflammatory factors in peripheral blood, and inhibited the immune response of peripheral immune organs in EAE mice. Besides, FSK treatment decreased the expression of STEAP4 in the spinal cord and effectively restored the iron balance in the brain, spinal cord, and serum of EAE mice. Further investigation showed that FSK can reduce IL-17 expression, prevent the differentiation of TH17 cells, and inhibit the calcium signaling pathway. Thus, these results demonstrate that FSK may have the potential to treat MS clinically.

2.
Front Endocrinol (Lausanne) ; 15: 1429514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247918

RESUMEN

Background: Evidence suggests a connection between DNA methylation (DNAm) aging and reproductive aging. However, the causal relationship between DNAm and age at menopause remains uncertain. Methods: Employing established DNAm epigenetic clocks, such as DNAm Hannum age acceleration (Hannum), Intrinsic epigenetic age acceleration (IEAA), DNAm-estimated granulocyte proportions (Gran), DNAm GrimAge acceleration (GrimAgeAccel), DNAm PhenoAge acceleration (PhenoAgeAccel), and DNAm-estimated plasminogen activator inhibitor-1 levels (DNAmPAIadjAge), a bidirectional Mendelian randomization (MR) study was carried out to explore the potential causality between DNAm and menopausal age. The primary analytical method used was the inverse variance weighted (IVW) estimation model, supplemented by various other estimation techniques. Results: DNAm aging acceleration or deceleration, as indicated by Hannum, IEAA, Gran, GrimAgeAccel, PhenoAgeAccel, and DNAmPAIadjAge, did not exhibit a statistically significant causal effect on menopausal age according to forward MR analysis. However, there was a suggestive positive causal association between age at menopause and Gran (Beta = 0.0010; 95% confidence interval (CI): 0.0004, 0.0020) in reverse MR analysis. Conclusion: The observed increase in granulocyte DNAm levels in relation to menopausal age could potentially serve as a valuable indicator for evaluating the physiological status at the onset of menopause.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Análisis de la Aleatorización Mendeliana , Menopausia , Humanos , Femenino , Menopausia/genética , Persona de Mediana Edad , Envejecimiento/genética , Adulto , Factores de Edad
3.
Rev Cardiovasc Med ; 25(7): 245, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39139410

RESUMEN

Background: Although observational studies have reported several common biomarkers related to coronary artery disease (CAD) and cancer, there is a shortage of traditional epidemiological data to establish causative linkages. Thus, we conducted a comprehensive two-sample Mendelian randomization (MR) analysis to systematically investigate the causal associations of 109 traits with both CAD and cancer to identify their shared risk and protective factors. Methods: The genetic association datasets pertaining to exposure and outcomes were reviewed using the most recent and public genome-wide association studies (GWAS). Inverse variance weighting (IVW), weighted median (WM), and MR-Egger strategies were implemented for the MR analyses. The heterogeneity and pleiotropy were measured utilizing leave-one-out sensitivity testing, MR-PRESSO outlier detection, and Cochran's Q test. Results: The IVW analyses revealed that genetic-predicted mean sphered cell volume (MSCV) is a protective factor for CAD, and weight is a risk factor. MSCV and weight also show similar effects on cancer. Furthermore, our study also identified a set of risk and protective factors unique to CAD and cancer, such as telomere length. Conclusions: Our Mendelian randomization study sheds light on shared and unique risk and protective factors for CAD and cancer, offering valuable insights that could guide future research and the development of personalized strategies for preventing and treating these two significant health issues.

4.
Front Endocrinol (Lausanne) ; 15: 1422752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211449

RESUMEN

Diabetes and its complications significantly affect individuals' quality of life. The etiology of diabetes mellitus and its associated complications is complex and not yet fully understood. There is an increasing emphasis on investigating the effects of endocrine disruptors on diabetes, as these substances can impact cellular processes, energy production, and utilization, ultimately leading to disturbances in energy homeostasis. Mitochondria play a crucial role in cellular energy generation, and any impairment in these organelles can increase susceptibility to diabetes. This review examines the most recent epidemiological and pathogenic evidence concerning the link between endocrine disruptors and diabetes, including its complications. The analysis suggests that endocrine disruptor-induced mitochondrial dysfunction-characterized by disruptions in the mitochondrial electron transport chain, dysregulation of calcium ions (Ca2+), overproduction of reactive oxygen species (ROS), and initiation of signaling pathways related to mitochondrial apoptosis-may be key mechanisms connecting endocrine disruptors to the development of diabetes and its complications.


Asunto(s)
Diabetes Mellitus , Disruptores Endocrinos , Mitocondrias , Humanos , Disruptores Endocrinos/efectos adversos , Disruptores Endocrinos/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Animales , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
5.
Nat Chem Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030363

RESUMEN

Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.

6.
Nat Commun ; 15(1): 6252, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048572

RESUMEN

Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Glicerofosfolípidos , Lipidómica , Animales , Enfermedad de Alzheimer/metabolismo , Lipidómica/métodos , Glicerofosfolípidos/metabolismo , Ratones , Encéfalo/metabolismo , Espectrometría de Movilidad Iónica/métodos , Masculino , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Cromatografía Liquida/métodos , Ratones Endogámicos C57BL , Hipocampo/metabolismo
7.
Anal Chim Acta ; 1318: 342905, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067909

RESUMEN

BACKGROUND: Fatty acids (FAs) are essential cellular components and play important roles in various biological processes. Importantly, FAs produced by microorganisms from renewable sugars are considered sustainable substrates for biodiesels and oleochemicals. Their complex structures and diverse functional roles in biochemical processes necessitate the development of efficient and accurate methods for their quantitative analysis. RESULTS: Here, we developed a novel method for relative quantification of FAs by combining 12-plex isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) labeling and microchip capillary electrophoresis-mass spectrometry (CE-MS). This method enables simultaneous quantification of 12 samples in a single MS analysis. DiLeuEN labeling introduced tertiary amine center structure into FAs, which makes them compatible with the positive mode separation of commercial microchip CE systems and further improves the sensitivity. The CE separation parameters were optimized, and the quantification accuracy was assessed using FA standards. Microchip CE-MS detection exhibited high sensitivity with a femtomole level detection limit and a total analysis time within 8 min. Finally, the applicability of our method to complex biological samples was demonstrated by analyzing FAs produced by four industrially relevant yeast strains (Saccharomyces cerevisiae, Yarrowia lipolytica YB-432, Yarrowia lipolytica Po1f and Rhodotorula glutinis). The analysis time for each sample is less than 1 min. SIGNIFICANCE: This work addresses the current challenges in the field by introducing a method that combines microchip-based capillary electrophoresis separation with multiplex isobaric labeling. Our method not only offers remarkable sensitivity and rapid analysis speed but also the capability to quantify fatty acids across multiple samples simultaneously, which holds significant potential for extensive application in FA quantitative studies in diverse research areas, promising an enhanced understanding of FA functions and mechanisms.


Asunto(s)
Electroforesis por Microchip , Ácidos Grasos , Espectrometría de Masas , Ácidos Grasos/análisis , Ácidos Grasos/química , Espectrometría de Masas/métodos , Electroforesis por Microchip/métodos , Ensayos Analíticos de Alto Rendimiento , Yarrowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Electroforesis Capilar/métodos
8.
Mol Immunol ; 172: 23-37, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865801

RESUMEN

Ulcerative colitis (UC) is a prevalent inflammatory disorder that emerges in the colon and rectum, exhibiting a rising global prevalence and seriously impacting the physical and mental health of patients. Significant challenges remain in UC treatment, highlighting the need for safe and effective long-term therapeutic approaches. Heralded as a promising physical treatment, the rotating magnetic field (RMF) demonstrates safety, stability, manageability, and efficiency. This study delves into RMF's potential in mitigating DSS-induced UC in mice, assessing disease activity indices (DAI) and pathological alterations such as daily body weight, fecal occult blood, colon length, and morphological changes. Besides, several indexes have been detected, including serum concentrations of pro-inflammatory cytokines (IL6, IL-17A, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-ß, IL-4, IL-10), the ratio of splenic CD3+, CD4+, and CD8+ T cells, the rate of apoptotic colonic cells, the expression of colonic inflammatory and tight junction-associated proteins. The results showed that RMF had beneficial effects on the decrease of intestinal permeability, the restoration of tight junctions, and the mitigation of mitochondrial respiratory complexes (MRCs) by attenuating inflammatory dysfunction in colons of DSS-induced UC model of mice. In conclusion, this study demonstrates that RMF attenuates colonic inflammation, enhances colonic tight junction, and alleviates MRCs impairment by regulating the equilibrium of pro-inflammatory and anti-inflammatory cytokines in UC mice, suggesting the potential application of RMF in the clinical treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colon , Citocinas , Sulfato de Dextran , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Ratones , Sulfato de Dextran/toxicidad , Colon/patología , Citocinas/metabolismo , Magnetoterapia/métodos , Masculino , Inflamación/patología , Modelos Animales de Enfermedad , Campos Magnéticos , Ratones Endogámicos C57BL
9.
Medicine (Baltimore) ; 103(25): e38610, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905395

RESUMEN

Maintaining a balanced bile acids (BAs) metabolism is essential for lipid and cholesterol metabolism, as well as fat intake and absorption. The development of obesity may be intricately linked to BAs and their conjugated compounds. Our study aims to assess how BAs influence the obesity indicators by Mendelian randomization (MR) analysis. Instrumental variables of 5 BAs were obtained from public genome-wide association study databases, and 8 genome-wide association studies related to obesity indicators were used as outcomes. Causal inference analysis utilized inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analysis involved MR-PRESSO and leave-one-out techniques to detect pleiotropy and outliers. Horizontal pleiotropy and heterogeneity were assessed using the MR-Egger intercept and Cochran Q statistic, respectively. The IVW analysis revealed an odds ratio of 0.94 (95% confidence interval: 0.88, 1.00; P = .05) for the association between glycolithocholate (GLCA) and obesity, indicating a marginal negative causal association. Consistent direction of the estimates obtained from the weighted median and MR-Egger methods was observed in the analysis of the association between GLCA and obesity. Furthermore, the IVW analysis demonstrated a suggestive association between GLCA and trunk fat percentage, with a beta value of -0.014 (95% confidence interval: -0.027, -0.0004; P = .04). Our findings suggest a potential negative causal relationship between GLCA and both obesity and trunk fat percentage, although no association survived corrections for multiple comparisons. These results indicate a trend towards a possible association between BAs and obesity, emphasizing the need for future studies.


Asunto(s)
Ácidos y Sales Biliares , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Obesidad , Análisis de la Aleatorización Mendeliana/métodos , Humanos , Obesidad/genética , Obesidad/epidemiología , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/sangre , Causalidad
10.
Front Endocrinol (Lausanne) ; 15: 1401648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899007

RESUMEN

Background: Metabolic abnormalities are closely tied to the development of ovarian cancer (OC), yet the relationship between anthropometric indicators as risk indicators for metabolic abnormalities and OC lacks consistency. Method: The Mendelian randomization (MR) approach is a widely used methodology for determining causal relationships. Our study employed summary statistics from the genome-wide association studies (GWAS), and we used inverse variance weighting (IVW) together with MR-Egger and weighted median (WM) supplementary analyses to assess causal relationships between exposure and outcome. Furthermore, additional sensitivity studies, such as leave-one-out analyses and MR-PRESSO were used to assess the stability of the associations. Result: The IVW findings demonstrated a causal associations between 10 metabolic factors and an increased risk of OC. Including "Basal metabolic rate" (OR= 1.24, P= 6.86×10-4); "Body fat percentage" (OR= 1.22, P= 8.20×10-3); "Hip circumference" (OR= 1.20, P= 5.92×10-4); "Trunk fat mass" (OR= 1.15, P= 1.03×10-2); "Trunk fat percentage" (OR= 1.25, P= 8.55×10-4); "Waist circumference" (OR= 1.23, P= 3.28×10-3); "Weight" (OR= 1.21, P= 9.82×10-4); "Whole body fat mass" (OR= 1.21, P= 4.90×10-4); "Whole body fat-free mass" (OR= 1.19, P= 4.11×10-3) and "Whole body water mass" (OR= 1.21, P= 1.85×10-3). Conclusion: Several metabolic markers linked to altered fat accumulation and distribution are significantly associated with an increased risk of OC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/epidemiología , Factores de Riesgo , Polimorfismo de Nucleótido Simple
11.
Nat Chem ; 16(5): 762-770, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38365942

RESUMEN

Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.


Asunto(s)
Glucolípidos , Lipidómica , Fosfolípidos , Espectrometría de Masas en Tándem , Animales , Glucolípidos/química , Fosfolípidos/química , Lipidómica/métodos , Espectrometría de Masas en Tándem/métodos , Ratones , Sulfatos/química , Hígado/metabolismo , Hígado/química
12.
Biomed Pharmacother ; 171: 116182, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38262146

RESUMEN

Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/ß-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/ß-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.


Asunto(s)
Endometriosis , MicroARNs , Animales , Humanos , Femenino , Endometriosis/patología , Vía de Señalización Wnt/fisiología , Proliferación Celular , Modelos Animales de Enfermedad , beta Catenina/metabolismo
13.
Eur J Med Res ; 29(1): 68, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245795

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease characterized by irreversible scarring of the lung parenchyma. Despite various interventions aimed at mitigating several different molecular aspects of the disease, only two drugs with limited clinical efficacy have so far been approved for IPF therapy. OBJECTIVE: We investigated the therapeutic efficacy of amifostine, a detoxifying drug clinically used for radiation-caused cytotoxicity, in bleomycin-induced murine pulmonary fibrosis. METHODS: C57BL6/J mice were intratracheally instilled with 3 U/kg of bleomycin. Three doses of amifostine (WR-2721, 200 mg/kg) were administered intraperitoneally on days 1, 3, and 5 after the bleomycin challenge. Bronchoalveolar lavage fluid (BALF) was collected on day 7 and day 21 for the assessment of lung inflammation, metabolites, and fibrotic injury. Human fibroblasts were treated in vitro with transforming growth factor beta 1 (TGF-ß1), followed by amifostine (WR-1065, 1-4 µg/mL) treatment. The effects of TGF-ß1 and amifostine on the mitochondrial production of reactive oxygen species (ROS) were assessed by live cell imaging of MitoSOX. Cellular metabolism was assessed by the extracellular acidification rate (ECAR), the oxygen consumption rate (OCR), and the concentrations of various energy-related metabolites as measured by mass spectrum (MS). Western blot analysis was performed to investigate the effect of amifostine on sirtuin 1 (SIRT1) and adenosine monophosphate activated kinase (AMPK). RESULTS: Three doses of amifostine significantly attenuated lung inflammation and pulmonary fibrosis. Pretreatment and post-treatment of human fibroblast cells with amifostine blocked TGF-ß1-induced mitochondrial ROS production and mitochondrial dysfunction in human fibroblast cells. Further, treatment of fibroblasts with TGF-ß1 shifted energy metabolism away from mitochondrial oxidative phosphorylation (OXPHOS) and towards glycolysis, as observed by an altered metabolite profile including a decreased ratio of NAD + /NADH and increased lactate concentration. Treatment with amifostine significantly restored energy metabolism and activated SIRT1, which in turn activated AMPK. The activation of AMPK was required to mediate the effects of amifostine on mitochondrial homeostasis and pulmonary fibrosis. This study provides evidence that repurposing of the clinically used drug amifostine may have therapeutic applications for IPF treatment. CONCLUSION: Amifostine inhibits bleomycin-induced pulmonary fibrosis by restoring mitochondrial function and cellular metabolism.


Asunto(s)
Amifostina , Fibrosis Pulmonar Idiopática , Neumonía , Humanos , Animales , Ratones , Bleomicina/efectos adversos , Factor de Crecimiento Transformador beta1 , Amifostina/efectos adversos , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , NAD/metabolismo , NAD/farmacología , NAD/uso terapéutico , Especies Reactivas de Oxígeno/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Pulmón , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Ratones Endogámicos C57BL
14.
Front Endocrinol (Lausanne) ; 14: 1307468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075077

RESUMEN

Background: Despite the well-established findings of a higher incidence of retina-related eye diseases in patients with diabetes, there is less investigation into the causal relationship between diabetes and non-retinal eye conditions, such as age-related cataracts and glaucoma. Methods: We performed Mendelian randomization (MR) analysis to examine the causal relationship between type 2 diabetes mellitus (T2DM) and 111 ocular diseases. We employed a set of 184 single nucleotide polymorphisms (SNPs) that reached genome-wide significance as instrumental variables (IVs). The primary analysis utilized the inverse variance-weighted (IVW) method, with MR-Egger and weighted median (WM) methods serving as supplementary analyses. Results: The results revealed suggestive positive causal relationships between T2DM and various ocular conditions, including "Senile cataract" (OR= 1.07; 95% CI: 1.03, 1.11; P=7.77×10-4), "Glaucoma" (OR= 1.08; 95% CI: 1.02, 1.13; P=4.81×10-3), and "Disorders of optic nerve and visual pathways" (OR= 1.10; 95% CI: 0.99, 1.23; P=7.01×10-2). Conclusion: Our evidence supports a causal relationship between T2DM and specific ocular disorders. This provides a basis for further research on the importance of T2DM management and prevention strategies in maintaining ocular health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades de la Retina , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Análisis de la Aleatorización Mendeliana , Cara , Retina
15.
Front Endocrinol (Lausanne) ; 14: 1295040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152136

RESUMEN

Background: The existing literature on the relationship of hyperparathyroidism with both blood counts and biochemical indicators primarily comprises observational studies, which have produced inconsistent findings. This study aimed to evaluate the causal relationship between hyperparathyroidism and blood counts and biochemical indicators. Methods: Mendelian randomization (MR) analyses were conducted to investigate the associations between hyperparathyroidism and the identified 55 blood counts and biochemical indicators. The genome-wide association study (GWAS) for hyperparathyroidism data was obtained from FinnGen, while the GWASs for the blood counts and biochemical indicators were sourced from the UK Biobank (UKBB). Results: The MR analysis using the inverse-variance weighted (IVW) method revealed potential causality between genetically predicted hyperparathyroidism and seven out of 55 blood counts and biochemical indicators. These markers include "Platelet count" (Beta = -0.041; 95% CI: -0.066, -0.016; p = 0.001), "Platelet distribution width (PDW)" (Beta = 0.031; 95% CI: 0.006, 0.056; p = 0.016), "Mean platelet volume (MPV)" (Beta = 0.043; 95% CI: 0.010, 0.076; p = 0.011), "Vitamin D" (Beta = -0.038; 95% CI: -0.063, -0.013; p = 0.003), "Calcium (Ca2+)" (Beta = 0.266; 95% CI: 0.022, 0.509; p = 0.033), "Phosphate" (Beta = -0.114; 95% CI: -0.214, -0.014; p = 0.025), and "Alkaline phosphatase (ALP)" (Beta = 0.030; 95% CI: 0.010, 0.049; p = 0.003). Conclusion: The findings of our study revealed a suggestive causal relationship between hyperparathyroidism and blood cell count as well as biochemical markers. This presents a novel perspective for further investigating the etiology and pathological mechanisms underlying hyperparathyroidism.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hiperparatiroidismo , Humanos , Análisis de la Aleatorización Mendeliana , Recuento de Plaquetas , Fosfatasa Alcalina
16.
Anal Chem ; 95(50): 18504-18513, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38033201

RESUMEN

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.


Asunto(s)
Aminoácidos , Proteómica , Animales , Ratones , Aminoácidos/análisis , Proteómica/métodos , Leucina/química , Aminas , Cromatografía Liquida/métodos
17.
J Mater Chem B ; 11(41): 9912-9921, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37850305

RESUMEN

Ligation efficiency in a surface-based DNA click chemistry (CuAAC) reaction is extremely restricted by the orientation and density of probes arranged on a heterogeneous surface. Herein, we engineer DNA tetrahedral nanostructure (DTN)-corbelled click chemistry to trigger a hybridization chain reaction (HCR) assembling a large-scale of nanozymes for ratiometric fluorescence detection of DNA adenine methyltransferase (Dam). In this study, a DNA tetrahedron structure with an alkynyl modifying pendant DNA probe (Alk-DTN) is designed and assembled on a magnetic bead (MB) as a scaffold for click chemistry. When a CuO NP-encoded magnetic nanoparticle (CuO-MNP) substrate was methylated by Dam, CuO NPs were released and turned into a mass of Cu+. The Cu+ droves azido modifying lDNA (azide-lDNA) to connect with the Alk-DTN probe on the MB through the click reaction, forming an intact primer to initiate the HCR. The HCR product, a rigid structure double-stranded DNA, periodically assembles glucose oxidase mimicking gold nanoparticles (GNPs) into a large-scale of nanozymes for catalyzing the oxidation of glucose to H2O2. NH2-MIL-101 MOFs, a fluorescent indicator and a biomimetic catalyst, activated the product H2O2 to oxidize o-phenylenediamine (oPD) into visually detectable 2,3-diaminophenazine (DAP). The change of the signal ratio between DAP and NH2-MIL-101 is proportional to the methylation event corresponding to the MTase activity. In this study, the DTN enhances the efficiency of the surface-based DNA click reaction and maintains the catalytic activities of gold nanoparticle nanozymes due to the intrinsic nature of mechanical rigidity and well-controlled orientation and well-adjusted size. Large-scale assembly of nanozymes circumvents the loss of natural enzyme activity caused by chemical modification and greatly improves the amplification efficiency. The proposed biosensor displayed a low detection limit of 0.001 U mL-1 for Dam MTase due to multiple amplification and was effective in real samples and methylation inhibitor screening, providing a promising modular platform for bioanalysis.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Química Clic , Peróxido de Hidrógeno , Nanopartículas del Metal/química , ADN/química , Metiltransferasas , Proteínas Tirosina Quinasas Receptoras
18.
Anal Bioanal Chem ; 415(19): 4649-4660, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37306781

RESUMEN

This study proposes a nitrogen and sulfur co-doped carbon dot (N/S-CD)-based FRET ratiometric fluorescence aptasensing strategy modulated with entropy-driven DNA amplifier for sensitive and accurate detection of ochratoxin A (OTA). In the strategy, a duplex DNA probe containing OTA aptamer and complementary DNA (cDNA) is designed as a recognition and transformation element. Upon sensing of target OTA, the cDNA was liberated, and triggered a three-chain DNA composite-based entropy-driven DNA circuit amplification, making CuO probes anchor on a magnetic bead (MB). The CuO-encoded MB complex probe is finally turned into abundant Cu2+, which oxidizes o-phenylenediamine (oPD) to generate 2,3-diaminophenazine (DAP) with yellow fluorescence and further triggers FRET between the blue fluorescent N/S-CDs and DAP. The changes in ratiometric fluorescence are related to the OTA concentration. Originating from the synergistic amplifications from the entropy-driven DNA circuits and Cu2+ amplification, the strategy dramatically enhanced detection performance. A limit of detection as low as 0.006 pg/mL of OTA was achieved. Significantly, the aptasensor can visually evaluate the OTA via on-site visual screening. Moreover, the high-confidence quantification of the OTA in real samples with results consistent with that of the LC-MS method indicated that the proposed strategy has practical application prospects for sensitive and accurate quantification in food safety.


Asunto(s)
Puntos Cuánticos , Nitrógeno/química , Azufre/química , Puntos Cuánticos/química , Entropía , Transferencia Resonante de Energía de Fluorescencia , ADN/química
19.
iScience ; : 107177, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37366395

RESUMEN

Pandemics such as COVID-19 threaten income growth by disrupting productive activities for households, especially those who have just escaped from poverty. We provide empirical evidence on how pandemic disproportionately threatens the rural productive livelihood based on 48 months of household production electricity consumption data. The results show that after COVID-19, the productive livelihood activities of 51.11% households who have just overcome poverty have returned to the level before poverty alleviation. Their productive livelihood activities dropped by 21.81% on average during the national COVID-19 epidemic and by 40.57% during the regional epidemic. The households with lower income, lower level of education and less labor force even suffer more. We estimate 3.74% decline in income owing to the decrease in productive activities, resulting in 5.41% of households potentially falling back into poverty. This study provides an important reference for countries being at risk of returning to poverty after pandemic.

20.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048045

RESUMEN

Ankylosing spondylitis (AS) is clinically characterized by bone fusion that is induced by the pathological formation of extra bone. Unfortunately, the fundamental mechanism and related therapies remain unclear. The loss of SHP-2 (encoded by Ptpn11) in CD4-Cre;Ptpn11f/f mice resulted in the induction of AS-like pathological characteristics, including spontaneous cartilage and bone lesions, kyphosis, and arthritis. Hence, this mouse was utilized as an AS model in this study. As one of the basic physical fields, the magnetic field (MF) has been proven to be an effective treatment method for articular cartilage degeneration. In this study, the effects of a rotating magnetic field (RMF; 0.2 T, 4 Hz) on an AS-like mouse model were investigated. The RMF treatment (2 h/d, 0.2 T, 4 Hz) was performed on AS mice from two months after birth until the day before sampling. The murine specimens were subjected to transcriptomics, immunomics, and metabolomics analyses, combined with molecular and pathological experiments. The results demonstrated that the mitigation of inflammatory deterioration resulted in an increase in functional osteogenesis and a decrease in dysfunctional osteolysis due to the maintenance of bone homeostasis via the RANKL/RANK/OPG signaling pathway. Additionally, by regulating the ratio of CD4+ and CD8+ T-cells, RMF treatment rebalanced the immune microenvironment in skeletal tissue. It has been observed that RMF interventions have the potential to alleviate AS, including by decreasing pathogenicity and preventing disease initiation. Consequently, RMF, as a moderately physical therapeutic strategy, could be considered to alleviate the degradation of cartilage and bone tissue in AS and as a potential option to halt the progression of AS.


Asunto(s)
Cartílago Articular , Espondilitis Anquilosante , Ratones , Animales , Espondilitis Anquilosante/terapia , Condrocitos/patología , Osteocitos , Cartílago Articular/patología , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...