RESUMEN
Regulating the spin states in transition-metal (TM)-based single-atom catalysts (SACs), such as the TM-Nx-C configurations, is crucial for improving the catalytic activity. However, the role of spin in single Ni atoms facilitating the electrochemical CO2 reduction reaction (CO2RR) has been largely overlooked. Using first-principles simulations, we investigated the electrocatalytic performance of Ni-N4-C SACs vertically stacked on the O-terminated MXene nanosheets for the CO2RR. The terminated O atoms on MXene axially interact with the Ni atom due to significant charge transfer between them. Unlike the pure Ni-N4 site, which lacks spin polarization, the newly formed Ni-N4O configuration breaks the spin degeneracy of Ni d orbitals, dramatically lifting the energy level of spin-down d orbitals relative to that of spin-up d orbitals. As a result, the d electrons of Ni in the two spin channels are rearranged, leading to large net spin moments of 1.4 µB. Compared to the Ni-N4 site, the partially filled minority-spin dz2 orbitals of Ni on Ni-N4O weaken the occupied d-π* orbitals between Ni and *COOH, significantly stabilizing the key intermediate. The detailed reaction mechanisms and energetics show that four MXenes, namely, Hf3C2, Zr3C2, Hf2C, and Zr2C, can induce a large spin on the Ni site, thereby improving catalytic activity for CO2 reduction to CO, with a lower onset potential of about -0.75 V vs SHE compared to pure Ni SACs (-1.17 V) according to the potential-constant model with an explicit solvent environment.
RESUMEN
Transformation of carbon dioxide and nitrate ions into urea offers an attractive route for both nitrogen fertilizer production and environmental remediation. However, achieving this transformation under mild conditions remains challenging. Herein, we report an efficient photoelectrochemical method for urea synthesis by co-reduction of carbon dioxide and nitrate ion over a Cu2O photocathode, delivering urea formation rate of 29.71±2.20â µmol g-1 h-1 and Faradaic efficiency (FE) of 12.90±1.15 % at low external potential (-0.017â V vs. reversible hydrogen electrode). Experimental data combined with theoretical calculations suggest that the adsorbed CO* and NO2* species are the key intermediates, and associated C-N coupling is the rate-determining step. This work demonstrates that Cu2O is an efficient catalyst to drive co-reduction of CO2 and NO3 - to urea under light irradiation with low external potential, showing great opportunity of photoelectrocatalysis as a sustainable tool for value-added chemical synthesis.
RESUMEN
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
RESUMEN
Improving the efficiency of the oxygen evolution reaction (OER) is crucial for advancing sustainable and environmentally friendly hydrogen energy. Layered double hydroxides (LDHs) have emerged as promising electrocatalysts for the OER. However, a thorough understanding of the impact of structural disorder and defects on the catalytic activity of LDHs remains limited. In this work, a series of NiAl-LDH models are systematically constructed, and their OER performance is rigorously screened through theoretical density functional theory. The acquired results unequivocally reveal that the energy increase induced by structural disorder is effectively counteracted at the defect surface, indicating the coexistence of defects and disorder. Notably, it is ascertained that the simultaneous presence of defects and disorder synergistically augments the catalytic activity of LDHs in the context of the OER. These theoretical findings offer valuable insights into the design of highly efficient OER catalysts while also shedding light on the efficacy of LDH electrocatalysts.
RESUMEN
Background & Aims: Bulevirtide (BLV) is a small lipopeptide agent that specifically binds to the sodium taurocholate cotransporting polypeptide (NTCP) bile salt transporter and HBV/HDV receptor on the surface of human hepatocytes and inhibits HDV and HBV entry. As a satellite virus of HBV, HDV virions are formed after assembly of HDV RNA with the HBV envelope proteins (HBsAg). Because both viruses exist as eight different genotypes, this creates a potential for high diversity in the HBV/HDV combinations. To investigate the sensitivity of various combinations of HBV/HDV genotypes to BLV, clinical and laboratory strains were assessed. Methods: For the laboratory strains, the different envelopes from HBV genotypes A through H were combined with HDV genotypes 1-8 in cotransfection assays. Clinical plasma isolates were obtained from clinical studies and academic collaborations to maximise the diversity of HBV/HDV genotypes tested. Results: The mean BLV EC50 against HDV laboratory strains ranged from 0.44 to 0.64 nM. Regardless of HBV and HDV genotypes, the clinical isolates showed similar sensitivities to BLV with mean values that ranged from 0.2 to 0.73 nM. Conclusions: These data support the use of BLV in patients infected with any HBV/HDV genotypes. Impact and implications: This study describes the potent activity of BLV against multiple laboratory strains spanning all HBV/HDV A-H/1-8 genotype combinations and the most diverse collection of HDV clinical samples tested to date, including HBV/HDV genotype combinations less frequently observed in the clinic. Overall, all isolates and laboratory strains displayed similar in vitro nanomolar sensitivity to BLV. This broad-spectrum antiviral activity of BLV has direct implications on potential simplified treatment for any patient infected with HDV, regardless of genotype, and supports the new 2023 EASL Clinical Practice Guidelines on HDV that recommend antiviral treatment for all patients with CHD.
RESUMEN
BACKGROUND: Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS: A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS: Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RIIimmunized mice. CONCLUSIONS: PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.
Asunto(s)
Malaria , Plasmodium ovale , Animales , Ratones , Plasmodium ovale/genética , Interferón gamma/genética , Linfocitos T CD8-positivos , Variaciones en el Número de Copia de ADN , Dominios Proteicos , Malaria/prevención & controlRESUMEN
Recent studies have shown that gut microorganisms can modulate host lifespan and activities, including sleep quality and motor performance. However, the role of gut microbial genetic variation in regulating host phenotypes remains unclear. In this study, we investigated the links between gut microbial genetic variation and host phenotypes using Saccharomyces cerevisiae and Drosophila melanogaster as research models. Our result suggested a novel role for peroxisome-related genes in yeast in regulating host lifespan and activities by modulating gut oxidative stress. Specifically, we found that deficiency in catalase A (CTA1) in yeast reduced both the sleep duration and lifespan of fruit flies significantly. Furthermore, our research also expanded our understanding of the relationship between sleep and longevity. Using a large sample size and excluding individual genetic background differences, we found that lifespan is associated with sleep duration, but not sleep fragmentation or motor performance. Overall, our study provides novel insights into the role of gut microbial genetic variation in regulating host phenotypes and offers potential new avenues for improving health and longevity.
Asunto(s)
Microbioma Gastrointestinal , Longevidad , Animales , Longevidad/genética , Drosophila melanogaster/genética , Saccharomyces cerevisiae , Variación GenéticaRESUMEN
Recent literature highlights the contributions the global energy sector has made to anthropogenic CH4 emissions, calling for immediate action. However, extant studies have failed to reveal the energy-related CH4 emissions induced by global trades of intermediate and final commodities or services. This paper traces fugitive CH4 emissions via global trade networks using the multi-regional input-output and complex network models. Results show that approximately four-fifths of global fugitive CH4 emissions in 2014 were associated with international trade, of which 83.07% and 16.93% were embodied in the intermediate and final trades, respectively. Japan, India, the USA, South Korea, and Germany were the world's five largest net importers of embodied fugitive CH4 emissions, while Indonesia, Russia, Nigeria, Qatar, and Iran were the five largest net exporters. Gas-related embodied emission transfers were the largest in both the intermediate and the final trade networks. The fugitive CH4 emissions embodied within the intermediate and final trade networks were all characterized by five trading communities. The virtual fugitive CH4 emission transfers via intermediate trade were largely determined by global energy trade patterns, especially the trade in regionally integrated crude oil and natural gas. Significant heterogeneity was revealed by the coexistence of numerous loosely linked economies and several hub economies (e.g., China, Germany, the USA, and South Africa). Interventions on the demand side of interregional and intraregional trade partners in different communities and hub economies will bring targeted opportunities for global energy-related CH4 emission reduction.
Asunto(s)
Comercio , Internacionalidad , Alemania , China , Irán , Dióxido de Carbono/análisisRESUMEN
Nitrous oxide (N2O) is the third most potent greenhouse gas (GHG) and the most important ozone depleting substance. But how global N2O emissions are connected through the interwoven trade network remains unclear. This paper attempts to specifically trace anthropogenic N2O emissions via global trade networks using a multi-regional input-output model and a complex network model. Nearly one quarter of global N2O emissions can be linked to products traded internationally in 2014. The top 20 economies contribute to about 70% of the total embodied N2O emission flows. In terms of the trade embodied emissions classified by sources, cropland-, livestock-, chemistry-, and other industries-related embodied N2O emissions account for 41.9%, 31.2%, 19.9%, and 7.0%, respectively. Clustering structure of the global N2O flow network is revealed by the regional integration of 5 trading communities. Hub economies such as mainland China and the USA are collectors and distributors, and some emerging countries, such as Mexico, Brazil, India, and Russia, also exhibit dominance in different kinds of networks. This study selects the cattle sector to further verify that low production-side emission intensities and trade cooperation can lead to N2O emission reduction. In view of the impact of trade networks on global N2O emissions, achieving N2O emission reduction calls for vigorous international cooperation.
Asunto(s)
Gases de Efecto Invernadero , Animales , Bovinos , Óxido Nitroso/análisis , China , Brasil , IndiaRESUMEN
Introducing different active sites into heterogeneous catalysts provides new prospects to address the challenges in single-atom catalysis. Herein, the Au single atoms together and the Au nanoparticles were loaded onto NiAl-LDH by a facile impregnation-reduction method for the first time, resulting in the formation of Au1+n-NiAl-LDH, in which abundant Au single atoms are located around the Au nanoparticles with â¼5 nm size. When applied in the electrocatalytic benzyl alcohol oxidation reaction (BAOR), the as-prepared Au1+n-NiAl-LDH exhibits a remarkable selectivity of 91% and 177.63 µmol for benzaldehyde in 5 hours, while in contrast examples using solely Au single atom loaded NiAl-LDH (Au1-NiAl-LDH) and solely Au nanoparticle loaded NiAl-LDH (Aun-NiAl-LDH) can only realize 87.36 µmol production (75% selectivity) and 48.90 µmol production (28% selectivity) of benzaldehyde, respectively. Such a dramatic difference can be attributed to the synergistic effects of Au single atoms and Au nanoparticles. DFT calculation results reveal that for Au1+n-NiAl-LDH, Au single atoms promote the dehydrogenation capacity of LDH laminates, while Au nanoparticles offer adsorption sites for the electrophilic attachment of benzyl alcohol.
RESUMEN
Isochrysis zhangjiangensis is an important microalgal species used as bait in aquaculture. However, its optimal cultivation temperature is around 25 °C, limiting its use in summer when temperature is higher. To overcome this limitation, we aimed to develop a consortia of I. zhangjiangensis and bacteria that are more resistant to heat stress. Here, six thermotolerance-promoting bacterial strains were isolated from the culture of a heat-tolerant mutant strain of I. zhangjiangensis (IM), and identified as Algoriphagus marincola, Nocardioides sp., Pseudidiomarina sp., Labrenzia alba, Nitratireductor sp., and Staphylococcus haemolyticus. Further, co-culturing I. zhangjiangensis with A. marincola under high temperature conditions increased cell density, chlorophyll a, PSII maximum photochemical efficiency (Fv/Fm), and soluble protein content of microalgae. The presence of A. marincola positively influenced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and total antioxidant capacity (T-AOC) in I. zhangjiangensis cells, while concurrently reducing the levels of reactive oxygen species (ROS). Additionally, gene expression studies confirmed that co-culturing with A. marincola upregulated the expression of antioxidant-related genes (sod and pod) and stress tolerance genes (heat shock protein genes). Our findings indicate that A. marincola effectively helps I. zhangjiangensis withstand high temperature stress, leading to improved yield of microalgae during high temperature conditions. The thermotolerance-promoting bacteria can be exploited as potential inoculants for enhancing the productivity and sustainability of bait microalgae in aquaculture.
Asunto(s)
Haptophyta , Termotolerancia , Antioxidantes/metabolismo , Haptophyta/metabolismo , Clorofila A/metabolismo , BacteriasRESUMEN
BACKGROUND & AIMS: Bulevirtide (BLV) is a HDV/HBV entry inhibitor that is associated with virologic response (responders, HDV-RNA undetectable or ≥2 log10 IU/ml decrease from baseline) in >50% of patients after a 24-week treatment. However, some patients only achieve a <1 log10 IU/ml decline in HDV-RNA after the 24-week treatment (non-responders). Here, we report a viral resistance analysis in participants receiving BLV monotherapy who were non-responders or experienced virologic breakthrough (VB, i.e., two consecutive increases in HDV-RNA of ≥1 log10 IU/ml from nadir or two consecutive HDV-RNA detectable results if previously undetectable) from the phase II MYR202 and phase III MYR301 study. METHODS: Deep-sequencing of the BLV-corresponding region in HBV PreS1 and of the HDV HDAg gene, as well as in vitro phenotypic testing, were performed for the participant with VB (n = 1) and non-responders (n = 20) at baseline (BL) and Week 24 (WK24). RESULTS: No amino acid exchanges associated with reduced susceptibility to BLV within the BLV-corresponding region or within HDAg were identified in isolates from any of the 21 participants at BL or at WK24. Although variants (HBV n = 1; HDV n = 13) were detected at BL in some non-responders or in the participant with VB, none were associated with reduced sensitivity to BLV in vitro. Furthermore, the same variant was detected in virologic responders. A comprehensive phenotypic analysis demonstrated that the BLV EC50 values from 116 BL samples were similar across non-responders, partial responders (HDV RNA decline ≥1 but <2 log10 IU/ml), and responders regardless of the presence of HBV and/or HDV polymorphisms. CONCLUSIONS: No amino acid substitutions associated with reduced sensitivity to BLV monotherapy were detected at BL or WK24 in non-responders or the participant with VB after 24-week BLV treatment. IMPACT AND IMPLICATIONS: This is the first study investigating the development of resistance in patients treated with BLV. Excluding resistance to BLV as an explanation for an insufficient decrease in HDV-RNA levels during BLV therapy is an important finding for patients, clinicians, and researchers. It demonstrates that BLV has a high barrier to resistance, indicating it is safe and suitable for long-term treatment, although long-term surveillance for resistance should be performed. Our results hint at other still unknown mechanisms as an explanation for the persistence of serum HDV-RNA during inhibition of viral entry. CLINICAL TRIAL NUMBERS: NCT03546621 and NCT03852719.
Asunto(s)
Antivirales , Virus de la Hepatitis Delta , Humanos , Antivirales/efectos adversos , Antígenos de Hepatitis delta , Virus de la Hepatitis Delta/genética , Hepatitis Crónica/tratamiento farmacológico , ARNRESUMEN
Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co3+ -oxo species are afforded for the GOR, including adsorbed hydroxyl on Co3+ ion (µ1 -OH-Co3+ ) and di-Co3+ -bridged lattice oxygen (µ2 -O-Co3+ ). Moreover, theoretical calculations unveil that µ1 -OH-Co3+ is responsible for oxygenation, while µ2 -O-Co3+ mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.
RESUMEN
Chiral supramolecular assembly (CSA) based on achiral molecules has provided important clues to understand the origin of biological chirality. However, a simple achiral monomer faces the challenge of chiral stacking with the absence of a chiral resource. The difficulty is that simple achiral monomer lacks steric repulsion to provide asymmetry during hierarchical assembly, which is a prerequisite for chiral stacking with an angle. Moreover, during chiral stacking of achiral molecules or units, the right-handed and left-handed chiral supramolecular isomers (CSIs) are equally formed due to the mirror-imaged conformation, which leads to chirality silence. Here, with the benefit of two-dimensional confinement space of layered double hydroxide (LDH), simple achiral molecules can be arranged to staggered bilayer arrays by imprinting the topological structure of LDH. Once LDH is removed, these staggered arrays can form asymmetric living seeds, which can further elongate to living units with the advantage of living supramolecular polymerization (LSP) by following off-pathway. Due to the asymmetry of living units, the possible chiral stacking outcomes, CSIs, are not mirror-imaged. With the increase of the molecular number in living units, the energy difference between CSIs can be amplified by self-replication of LSP, leading to handedness preference. Thus, the detectable CSA is mainly derived from the CSI with energetically favored hierarchical structure. Thus, our strategy breaks the stereotype that the complex molecular structure and symmetry breaking mechanism are necessary for the formation of detectable CSA by achiral molecules.
RESUMEN
Transformation of biomass and plastic wastes to value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. Electrocatalysis offers a sustainable approach; however, it remains a huge challenge to increase the current density and deliver market-demanded chemicals with high selectivity. Herein, we demonstrate an electrocatalytic strategy for upcycling glycerol (from biodiesel byproduct) to lactic acid and ethylene glycol (from polyethylene terephthalate waste) to glycolic acid, with both products being as valuable monomers for biodegradable polymer production. By using a nickel hydroxide-supported gold electrocatalyst (Au/Ni(OH)2), we achieve high selectivities of lactic acid and glycolic acid (77 and 91%, respectively) with high current densities at moderate potentials (317.7 mA/cm2 at 0.95 V vs RHE and 326.2 mA/cm2 at 1.15 V vs RHE, respectively). We reveal that glycerol and ethylene glycol can be enriched at the Au/Ni(OH)2 interface through their adjacent hydroxyl groups, substantially increasing local concentrations and thus high current densities. As a proof of concept, we employed a membrane-free flow electrolyzer for upcycling triglyceride and PET bottles, attaining 11.2 g of lactic acid coupled with 9.3 L of H2 and 13.7 g of glycolic acid coupled with 9.4 L of H2, respectively, revealing the potential of coproduction of valuable chemicals and H2 fuel from wastes in a sustainable fashion.
RESUMEN
Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by high morbidity, high disability rate, and slow course of disease. The clinical diagnostic method of PD is complex and time-consuming, and there is no clear biomarker for clinical use. We aimed to investigate the plasma metabolites in PD and find out potential biomarkers with diagnostic ability. In the analysis of more than 40 metabolites including short-chain fatty acids, long-chain fatty acids, amino acids, and carbohydrates, the difference of short-chain fatty acids was observed. Acetic acid concentration was higher in PD than in healthy controls, and propanoic acid and 2,3,4-trihydroxybutyric acid were lower in PD. Compared with the early stage of PD, acetic acid increased significantly in the advanced stage of PD. Propanoic acid increased significantly in medicated PD compared with drug naïve PD. ROC analysis revealed acetic acid discriminated PD from healthy controls with 100% sensitivity, 88.9% specificity, and an area under the curve (AUC) of 0.981, and propanoic acid discriminated PD from healthy controls with an AUC of 0.981, 100% sensitivity, and 94.4% specificity. Acetic acid and propanoic acid may be a potential biomarker for differentiating PD from health, and the propanoic acid was evaluated as the most potential diagnostic marker because of its extremely high sensitivity and specificity.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Propionatos , Metabolómica/métodos , Biomarcadores/metabolismoRESUMEN
This study analyzed and reported the basic information and clinical evidence of Chinese patent medicines for digestive system diseases in children in a scoping review manner. Based on the drug instructions, the basic information of Chinese patent medicines for digestive system diseases in children was obtained by searching the three lists of national medicines. At the same time, the relevant clinical literatures from the first day of establishment to March 7, 2022 were obtained from Chinese and English databases. According to the screening criteria, 39 Chinese patent medicines were included, involving 8 dosage forms. Eight Chinese medicines including Crataegi Fructus, Poria, Citri Reticulatae Pericarpium, Hordei Fructus Germinatus, Arecae Semen, Massa Medicata Fermentata, Dioscoreae Rhizoma, and Atractylodis Macrocephalae Rhizoma were frequently used, and the main effects were invigorating spleen, checking diarrhea, promoting digestion, clearing heat, and harmonizing stomach. The indications for Chinese patent medicines were mainly diarrhea, anorexia, food accumulation, dyspepsia, and rotavirus enteritis in children. Among all drug instructions, only 4 mentioned adverse reactions and 6 mentioned contraindications. Ninety-two clinical studies were included ultimately, including 84 randomized controlled studies, 2 systematic reviews/Meta-analysis, 1 retrospective study, and 5 case series. The literatures only covered 21 kinds of Chinese patent medicines, with the most studies related to Xingpi Yanger Granules, accounting for 32.6% of the total literature volume. The sample size in the literatures was mainly focused on 51-200 cases, and 51-100 cases were selected by the most literatures, accounting for 34.45%. The interventions of the experimental group were mainly Chinese patent medicines or Chinese patent medicines combined with western medicines. The literatures with treatment course of 0-7 d accounted for the largest proportion(51.10%). The effective rate and symptom improvement time were used as the indexes to evaluate the results. The main adverse reactions were vomiting, constipation, nausea, rash, cold, diarrhea, redness of the skin around the umbilicus, or red itchy skin. The analysis of this study found that Chinese patent medicines have good curative effect and research prospects in the treatment of digestive system diseases in children. However, most clinical evidence has problems, such as limited indexes to evaluate the results, lack of traditional Chinese medicine characteristics, uneven quantity and low quality of Chinese patent medicine literatures, and insufficient specification of instructions. In the future, high-quality clinical studies on this field should be actively carried out, and economic studies and clinical comprehensive evaluation of Chinese patent medicines should be strengthened to explore the characteristics and advantages of its treatment, so as to provide decision-making basis for finding the accurate clinical positioning and promoting the rational clinical application of Chinese patent medicines for treating digestive system diseases in children.
Asunto(s)
Enfermedades del Sistema Digestivo , Medicamentos Herbarios Chinos , Niño , China , Diarrea/tratamiento farmacológico , Enfermedades del Sistema Digestivo/tratamiento farmacológico , Medicamentos Herbarios Chinos/efectos adversos , Humanos , Medicina Tradicional China , Medicamentos sin Prescripción/efectos adversos , Estudios RetrospectivosRESUMEN
This study evaluated and compared the efficacy, safety and economy of four Chinese patent medicines(CPMs) in the treatment of functional dyspepsia(FD) using the method of rapid health technology assessment. It aims to provide decision-makers with rapid decision-making information. The eight Chinese and English databases were comprehensively and systematically searched for the relevant clinical research. Studies were screened and evaluated. A total of 110 studies were identified, including 95 randomized controlled trials(RCTs), 7 controlled clinical trials(CCTs), 7 systematic review/Meta-analysis and 1 economic evaluation, among which 28 were Dalitong Granules, 49 were Zhizhu Kuanzhong Capsules, 3 were Biling Weitong Granules and 30 were Qizhi Weitong Granules(Tablets/Capsules). The quality of the included literature was generally low. The efficacy of four CPMs alone or combined with western medicine in the treatment of FD is different. Dalitong Granules was used to treat motility disorder in FD. Zhizhu Kuanzhong Capsules and Qizhi Weitong Granules(Tablets/Capsules) can treat FD patients with anxiety and depression. Qizhi Weitong Granules(Tablets/Capsules) were mainly used in FD for perimenopausal patients. There were no serious adverse reactions in the clinical study of four CPMs in the treatment of FD. Dalitong Granules has better effects than mosapride in the treatment of FD, but the cost is slightly higher. The cost-effectiveness ratio of Zhizhu Kuanzhong Capsules in the treatment of FD patients with anxiety and depression was lower than that of Domperidone. In terms of average daily price, Qizhi Weitong Tablets has the highest price(27.00 yuan per day), Qizhi Weitong Granules has the lowest price(5.04 yuan per day), Biling Weitong Granules has a relatively high price(15.53 yuan per day), followed by Dalitong Granules(13.03 yuan per day). The evidence of Dalitong Granules covered the efficacy, safety and economy, which is relatively complete compared with the other three drugs. It has effective potential in the treatment of motility disorder in FD. Further research in this field in the future is needed.
Asunto(s)
Medicamentos Herbarios Chinos , Dispepsia , Cápsulas , China , Clorobencenos , Domperidona/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Dispepsia/tratamiento farmacológico , Humanos , Medicamentos sin Prescripción/uso terapéutico , Estómago , Sulfuros , Comprimidos , Evaluación de la Tecnología BiomédicaRESUMEN
Adipic acid is an important building block of polymers, and is commercially produced by thermo-catalytic oxidation of ketone-alcohol oil (a mixture of cyclohexanol and cyclohexanone). However, this process heavily relies on the use of corrosive nitric acid while releases nitrous oxide as a potent greenhouse gas. Herein, we report an electrocatalytic strategy for the oxidation of cyclohexanone to adipic acid coupled with H2 production over a nickel hydroxide (Ni(OH)2) catalyst modified with sodium dodecyl sulfonate (SDS). The intercalated SDS facilitates the enrichment of immiscible cyclohexanone in aqueous medium, thus achieving 3.6-fold greater productivity of adipic acid and higher faradaic efficiency (FE) compared with pure Ni(OH)2 (93% versus 56%). This strategy is demonstrated effective for a variety of immiscible aldehydes and ketones in aqueous solution. Furthermore, we design a realistic two-electrode flow electrolyzer for electrooxidation of cyclohexanone coupling with H2 production, attaining adipic acid productivity of 4.7 mmol coupled with H2 productivity of 8.0 L at 0.8 A (corresponding to 30 mA cm-2) in 24 h.
RESUMEN
Isochrysis galbana is widely used in aquaculture as a bait microalgal species. High temperature (HT) can severely impair the development of I. galbana, exerting adverse effects on its yield. MicroRNAs (miRNAs) play an essential role in modulating stress-responsive genes. However, the role of miRNAs in response to HT in microalgae remains largely unexplored. In the present study, we identified several conserved and novel miRNAs in I. galbana through miRNome sequencing. Among these identified miRNAs, 22 miRNAs were differentially expressed in response to heat stress, and their target genes were predicted accordingly. Moreover, a comprehensive and integrated analysis of miRNome and transcriptome was performed. We found that six potential reversely correlated differentially expressed miRNA (DEM) and differentially expressed gene (DEG) pairs were associated with heat stress response (HSR) in I. galbana. The expressions of DEMs and DEGs were further verified using real-time quantitative PCR (RT-qPCR). Integrated analyses showed that miRNAs played fundamental roles in the regulatory network of HSR in I. galbana mainly by regulating some heat-responsive genes, including heat shock proteins (HSPs), reactive oxygen species (ROS) signaling-related genes, and specific key genes in the ubiquitination pathway. Our current study identified the first set of heat-responsive miRNAs from I. galbana and helped elucidate the miRNA-mediated HSR and resistance mechanisms in I. galbana. This new knowledge could provide ways to enhance its heat stress tolerance.