Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 1): 129642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266838

RESUMEN

The objective of this study was to develop an injectable hydrogel based on furfuryl amine-conjugated hyaluronic acid (FA-conj-HA) and evaluate the in vivo anti-4 T1 tumor activity of doxorubicin-loaded hydrogel (DOX@FA-conj-HAgel). The cargo-free hydrogel (FA-conj-HAgel) was fabricated through a Diels-Alder reaction at 37 °C with FA-conj-HA as a gel material and four armed poly(ethylene glycol)2000-maleimide (4-arm-PEG2000-Mal) as a cross-linker. The bio-safety of FA-conj-HAgel were assessed, and the in vivo antitumor activity of DOX@FA-conj-HAgel was also investigated. Many 3D network structures were observed from scanning electron microscope (SEM) photograph, confirming the successful preparation of FA-conj-HAgel. The absence of cytotoxicity from FA-conj-HAgel was proved by the high viability of 4 T1 cells. In vivo bio-safety studies suggested that the obtained FA-conj-HAgel did not induce acute toxicity or other lesions in treated mice, confirming its high bio-safety. The reduced tumor volumes, hematoxylin-eosin staining (H&E), and TdT-mediated dUTP-biotin nick end labeling (TUNEL) analysis indicated the potent in vivo anti-4 T1 tumor effects of DOX@FA-conj-HAgel. In conclusion, the favorable bio-safety and potent antitumor activity of DOX@FA-conj-HAgel highlighted its potential application in oncological therapy.


Asunto(s)
Hidrogeles , Neoplasias , Ratones , Animales , Hidrogeles/química , Ácido Hialurónico/química , Reacción de Cicloadición , Doxorrubicina/química
3.
Chem Biol Interact ; 384: 110710, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716421

RESUMEN

Poloxamer 188 is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, docetaxel (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.

4.
Eur J Med Chem ; 260: 115715, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597438

RESUMEN

The purpose of this study was to synthesize DHPD polymers through the conjugation of doxorubicin (DOX) molecules onto poly(ethylene glycol) (PEG) chains via acylhydrazone bonds, and to fabricate pH-responsive DHPD nanoparticles (NPs) for investigation of their biosecurity and in vivo anti-tumor activity. The morphology, size distribution, stability, pH-responsiveness, biosecurity, and in vivo anti-tumor effects of the DHPD NPs were evaluated. Characterization of the DHPD polymers using 1H NMR, FTIR, and Raman spectra confirmed their successful synthesis. The DHPD NPs exhibited a round morphology with an average diameter of 144.4 ± 1.7 nm and a polydispersity index (PDI) of 0.23 ± 0.02. Biosecurity studies indicated that the DHPD NPs were non-toxic to treated mice, and in vitro cell tests demonstrated their ability to be taken up by 4T1 cells. Under the acidic microenvironment of 4T1 cells, the acylhydrazone bonds were cleaved, resulting in increased DOX delivery to tumor cells and improved in vivo anti-tumor effects. Animal experiments confirmed that the DHPD NPs reduced DOX toxicity while enhancing its anti-tumor activity. Furthermore, results from the analysis of γ-interferon (INF-γ), tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF) indicated that the DHPD NPs improved the anti-4T1 tumor effect of DOX, suggesting their potential application in the treatment of breast cancer.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular , Doxorrubicina/farmacología , Polímeros , Concentración de Iones de Hidrógeno , Microambiente Tumoral
5.
Appl Biochem Biotechnol ; 189(1): 193-205, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30969398

RESUMEN

Utilization of low-cost raw materials for the bio-based chemical production, such as carotenoids, by the co-culture of Rhodotorula glutinis and Chlorella vulgaris has recently become an attractive option. In this study, the primary nutrients of starch wastewater were analyzed, which were used for carotenoid production by the co-culture strategy in a 5-L fermenter around 4000 Lux light intensity. Synergistic effect of gas utilization revealed that the two species could build up the beneficial balance on mutualism. The maximum carotenoid productivity and COD removal efficiency were 12.34 mg/L and 79.6%, respectively, which were higher than those of monoculture yeast (8.31 mg/L and 54.1%). The organic acids, amino acids, and sugar removal efficiencies were increased by 85%, 31%, and 44%, respectively, and more than three kinds of carotenoids were identified compared with those of monoculture yeast. The results demonstrated that the co-culture strategy of two different nutritional microorganisms could significantly improve carotenoid productivity and COD removal efficiency.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Carotenoides/aislamiento & purificación , Chlorella vulgaris/metabolismo , Rhodotorula/metabolismo , Aguas Residuales , Técnicas de Cocultivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...