Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Angew Chem Int Ed Engl ; : e202416002, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279688

RESUMEN

Life-threatening hypertension remains inadequately controlled in clinics due to its heterogenous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90% versus 58%). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.

2.
Front Microbiol ; 15: 1349152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318430

RESUMEN

A low-temperature-tolerant simultaneous nitrification-denitrification bacterial strain of Acinetobacter kyonggiensis (AKD4) was identified. It showed high efficiency in total nitrogen (TN) removal (92.45% at 10°C and 87.51% at 30°C), indicating its excellent low-temperature tolerance. Transcriptomic analysis revealed possible metabolic mechanisms under low-temperature stress. Genes involved in cell growth, including ATP synthase (atpADGH), amino acid (glyA, dctA, and ilvE), and TCA cycle metabolism (gltA, fumC, and mdh) were remarkably upregulated from 1.05-3.44-fold at 10°C, suggesting that their actions enhance survivability at low temperatures. The expression levels of genes associated with nitrogen assimilation (glnAE, gltBD, and gdhA), nitrogen metabolism regulation (ntrC, glnB, and glnD), and denitrification processes (napA) were increased from 1.01-4.38-fold at 10°C, which might have contributed to the bacterium's highly efficient nitrogen removal performance at low temperatures. Overall, this study offers valuable insights into transcriptome, and enhances the comprehension of the low-temperature-tolerant mechanism of simultaneous nitrification and denitrification processes.

3.
Heliyon ; 10(18): e37541, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328574

RESUMEN

Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.

4.
BioTech (Basel) ; 13(3)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39189210

RESUMEN

The black soldier fly is a valuable resource insect capable of transforming organic waste while producing antimicrobial peptides (AMPs). The inhibition zone assay (IZA) is a method used to demonstrate the antimicrobial activity of AMPs. This study aimed to examine the experimental principles and establish a standardized IZA method. Results indicated that the AMPs extract consisted of proteins ranging in molecular weights from 0 to 40 kDa. The AMPs diffused radially on an agar plate through an Oxford cup. The diffusion radius was influenced by the concentration and volume of the AMPs but ultimately determined by the mass of the AMPs. The swabbing method was found to be effective for inoculating bacteria on the agar plate. Among the conditions tested, the plate nutrient concentration was the most sensitive factor for the IZA, followed by bacterial concentration and incubation time. Optimal conditions for the IZA included a nutrient plate of 0.5× TSA, a bacterial concentration of 106 CFU/mL, and an incubation time of 12 h, with oxytetracycline (OTC) at 0.01 mg/mL serving as the positive control. The antimicrobial-specific activity of AMPs could be standardized by the ratio of inhibition zone diameters between AMPs and OTC. These findings contribute to the standardization of the IZA method for profiling the antimicrobial activity of AMPs.

5.
STAR Protoc ; 5(3): 103235, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116197

RESUMEN

Selenoprotein thioredoxin reductase 1 (TXNRD1) is a promising therapeutic target, with several inhibitors reported to inhibit TXNRD1 activity. These inhibitors have the potential for applications such as anti-tumor medications. Here, we present a protocol for assessing irreversible inhibitors of TXNRD1. We describe four assays covering cellular TXNRD activity measurement, recombinant enzyme-based activity determination, differential scanning fluorimetry (DSF), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. This protocol will facilitate the screening and development of potential small-molecule inhibitors of TXNRD1.


Asunto(s)
Inhibidores Enzimáticos , Espectrometría de Masas en Tándem , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Tiorredoxina Reductasa 1/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Fluorometría/métodos
6.
iScience ; 27(8): 110413, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39108724

RESUMEN

Platinum-based chemo-resistance is the major issue for the treatment of small cell lung cancer (SCLC). The integrative analysis of multi-omics data is a reliable approach for discovering novel biomarkers associated with chemo-resistance. Here, multi-omics integrative analysis and Cox regression found that higher expression of PCDHB4 was associated with poorer survival of SCLC patients who received chemotherapy. PCDHB4 gene was hypomethylated and upregulated in SCLC, which was validated in the levels of promoter methylation, mRNA, and protein expression. Mechanistically, using bulk RNA-seq data, functional enrichment analysis indicated that higher PCDHB4 expression was associated with lower immune infiltration. The analysis of single-cell RNA-seq (scRNA-seq) found that SCLC cells with PCDHB4 expression exhibited the characteristics of stemness and EMT. In addition, the high expression and hypomethylation of PCDHB4 were also significantly associated with poor survival in lung squamous cell carcinoma. In summary, PCDHB4 is a potential prognostic biomarker of platinum-based chemotherapy in SCLC.

7.
Biol Trace Elem Res ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141196

RESUMEN

Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.

8.
EJNMMI Phys ; 11(1): 70, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090442

RESUMEN

BACKGROUND: Accurately redirecting reconstructed Positron emission tomography (PET) images into short-axis (SA) images shows great significance for subsequent clinical diagnosis. We developed a system for automatic redirection and quantitative analysis of myocardial PET images. METHODS: A total of 128 patients were enrolled for 18 F-FDG PET/CT myocardial metabolic images (MMIs), including 3 image classifications: without defects, with defects, and excess uptake. The automatic reorientation system includes five modules: regional division, myocardial segmentation, ellipsoid fitting, image rotation and quantitative analysis. First, the left ventricular geometry-based canny edge detection (LVG-CED) was developed and compared with the other 5 common region segmentation algorithms, the optimized partitioning was determined based on partition success rate. Then, 9 myocardial segmentation methods and 4 ellipsoid fitting methods were combined to derive 36 cross combinations for diagnostic performance in terms of Pearson correlation coefficient (PCC), Kendall correlation coefficient (KCC), Spearman correlation coefficient (SCC), and determination coefficient. Finally, the deflection angles were computed by ellipsoid fitting and the SA images were derived by affine transformation. Furthermore, the polar maps were used for quantitative analysis of SA images, and the redirection effects of 3 different image classifications were analyzed using correlation coefficients. RESULTS: On the dataset, LVG-CED outperformed other methods in the regional division module with a 100% success rate. In 36 cross combinations, PSO-FCM and LLS-SVD performed the best in terms of correlation coefficient. The linear results indicate that our algorithm (LVG-CED, PSO-FCM, and LLS-SVD) has good consistency with the reference manual method. In quantitative analysis, the similarities between our method and the reference manual method were higher than 96% at 17 segments. Moreover, our method demonstrated excellent performance in all 3 image classifications. CONCLUSION: Our algorithm system could realize accurate automatic reorientation and quantitative analysis of PET MMIs, which is also effective for images suffering from interference.

9.
Front Microbiol ; 15: 1400214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946900

RESUMEN

Background: The prevalence of pulmonary tuberculosis (PTB) as an infectious disease continues to contribute significantly to global mortality. According to recent studies, the gut microbiota of PTB patients and healthy controls (HCs) show significant disparities. However, the causal relationship between them has yet to be elucidated. Methods: We conducted a study using Mendelian Randomization (MR) to explore the potential causal link between gut microbiota and pulmonary tuberculosis (PTB). The summary statistics of the gut microbiota were acquired from the MiBioGen consortium, while data on PTB were sourced from pheweb.jp. A range of statistical methodologies were employed to evaluate causality, encompassing inverse variance weighting (IVW), MR-Egger, weighted median (WM), weighted model, and simple model. We utilized instrumental variables (IVs) that have a direct causal relationship with PTB to annotate SNPs, aiming to discover the genes harboring these genetic variants and uncover potential associations between host genes and the microbiome in patients with PTB. Results: Among the 196 bacterial traits in the gut microbiome, we have identified a total of three microbiomes that exhibit a significant association with PTB. The occurrence of Dorea (P = 0.0458, FDR-adjusted P = 0.0458) and Parasutterella (P = 0.0056, FDR-adjusted P = 0.0168) was linked to an elevated risk of PTB, while the presence of Lachnoclostridium (P = 0.0347, FDR-adjusted P = 0.0520) demonstrated a protective effect against PTB. Our reverse Two-Sample Mendelian Randomization (TSMR) analysis did not yield any evidence supporting the hypothesis of reverse causality from PTB to alterations in the intestinal flora. Conclusion: We have established a connection between the gut microbiota and PTB through gene prediction analysis, supporting the use of gut microecological therapy in managing PTB and paving the way for further understanding of how gut microbiota contributes to PTB's development.

10.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063214

RESUMEN

Erianin, a bibenzyl compound found in dendrobium extract, has demonstrated broad anticancer activity. However, its mechanism of action in gastric cancer (GC) remains poorly understood. LKB1 is a tumor-suppressor gene, and its mutation is an important driver of various cancers. Yet some studies have reported contradictory findings. In this study, we combined bioinformatics and in vitro and in vivo experiments to investigate the effect and potential mechanism of Erianin in the treatment of GC. The results show that LKB1 was highly expressed in patients' tumor tissues and GC cells, and it was associated with poor patient prognosis. Erianin could promote GC cell apoptosis and inhibit the scratch repair, migration, invasion, and epithelial-mesenchymal transition (EMT) characteristics. Erianin dose-dependently inhibited the expression of LKB1, SIK2, SIK3, and PARD3 but had no significant effect on SIK1. Erianin also inhibited tumor growth in CDX mice model. Unexpectedly, 5-FU also exhibited a certain inhibitory effect on LKB1. The combination of Erianin and 5-FU significantly improved the anti-tumor efficacy of 5-FU in the growth of GC cells and xenograft mouse models. In summary, Erianin is a potential anti-GC compound that can inhibit GC growth and EMT properties by targeting the LKB1-SIK2/3-PARD3-signaling axis. The synergistic effect of Erianin and 5-FU suggests a promising therapeutic strategy for GC treatment.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Bibencilos , Proliferación Celular , Dendrobium , Transición Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Dendrobium/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Animales , Bibencilos/farmacología , Bibencilos/química , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Fenol
11.
Biology (Basel) ; 13(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39056727

RESUMEN

With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.

12.
Anal Chem ; 96(16): 6390-6397, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608159

RESUMEN

Although gastric cancer (GC) is one of the most frequent malignant tumors in the digestive tract with high morbidity and mortality, it remains a diagnostic dilemma due to its reliance on invasive biopsy or insensitive assays. Herein, we report a fluorescent gastric cancer reporter (FGCR) with activatable near-infrared fluorescence (NIRF) signals and high renal-clearance efficiency for the detection of orthotopic GC in a murine model via real-time imaging and remote urinalysis. In the presence of gastric-tumor-associated ß-galactosidase (ß-Gal), FGCR can be fluorescently activated for in vivo NIRF imaging. Relying on its high renal-clearance efficiency (∼95% ID), it can be rapidly excreted through kidneys to urine for the ultrasensitive detection of tumors with a diameter down to ∼2.1 mm and for assessing the prognosis of oxaliplatin-based chemotherapy. This study not only provides a new approach for noninvasive auxiliary diagnosis and prognosis of GC but also provides guidelines for the development of fluorescence probes for cancer diagnosis.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Neoplasias Gástricas , beta-Galactosidasa , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/orina , Neoplasias Gástricas/patología , Animales , beta-Galactosidasa/metabolismo , Colorantes Fluorescentes/química , Humanos , Ratones , Línea Celular Tumoral , Ratones Desnudos
13.
Nutrients ; 16(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674858

RESUMEN

Polygonati Rhizoma (PR) has certain neuroprotective effects as a homology of medicine and food. In this study, systematic pharmacology, molecular docking, and in vitro experiments were integrated to verify the antidepressant active ingredients in PR and their mechanisms. A total of seven compounds in PR were found to be associated with 45 targets of depression. Preliminarily, DFV docking with cyclooxygenase 2 (COX2) showed good affinity. In vitro, DFV inhibited lipopolysaccharide (LPS)-induced inflammation of BV-2 cells, reversed amoeba-like morphological changes, and increased mitochondrial membrane potential. DFV reversed the malondialdehyde (MDA) overexpression and superoxide dismutase (SOD) expression inhibition in LPS-induced BV-2 cells and decreased interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6 mRNA expression levels in a dose-dependent manner. DFV inhibited both mRNA and protein expression levels of COX2 induced by LPS, and the activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and caspase1 was suppressed, thus exerting an antidepressant effect. This study proves that DFV may be an important component basis for PR to play an antidepressant role.


Asunto(s)
Antidepresivos , Ciclooxigenasa 2 , Depresión , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Polygonatum , Rizoma , Polygonatum/química , Animales , Antidepresivos/farmacología , Rizoma/química , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Ratones , Depresión/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
14.
ACS Nano ; 18(11): 8437-8451, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501308

RESUMEN

Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.


Asunto(s)
Carbocianinas , Enfermedades Inflamatorias del Intestino , Imagen Óptica , Animales , Ratones , Pronóstico , Imagen Óptica/métodos , Colorantes Fluorescentes , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Diagnóstico Precoz
15.
Biomed Pharmacother ; 173: 116295, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401517

RESUMEN

Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.


Asunto(s)
Bibencilos , Bibencilos/farmacología , Fenol , Antiinflamatorios/farmacología
16.
Biomater Sci ; 12(6): 1357-1370, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38374725

RESUMEN

Optical imaging has played an indispensable role in clinical diagnostics and fundamental biomedical research due to its high sensitivity, high spatiotemporal resolution, cost-effectiveness, and easy accessibility. However, the issues of light scattering and low tissue penetration make them effective only for superficial imaging. To overcome these issues, renal-clearable optical nanoprobes have recently emerged, which are activated by abnormal disease-associated biomarkers and initiate a pharmacokinetic switch by undergoing degradation and eventually releasing signal reporters into urine, for simple imaging and sensitive optical in vitro urinalysis. In this review, we focus on the advancements of renal-clearable organic nanoprobes for optical imaging and remote urinalysis. The versatile design strategies of these nanoprobes are discussed along with their sensing mechanisms toward biomolecules of interest as well as their unique biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation renal-clearable nanoprobes for in vivo imaging and in vitro urinalysis.


Asunto(s)
Riñón , Imagen Óptica , Diagnóstico Precoz , Riñón/diagnóstico por imagen , Riñón/metabolismo
17.
Microb Pathog ; 189: 106598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423403

RESUMEN

Propionibacterium acnes (P. acnes) is an anaerobic and gram-positive bacterium involved in the pathogenesis and inflammation of acne vulgaris. This study particularly focuses on the antimicrobial effect of Lacticaseibacillus paracasei LPH01 against P. acnes, a bacterium that causes acne vulgaris. Fifty-seven Lactobacillus strains were tested for their ability to inhibit P. acnes growth employing the Oxford Cup and double dilution methods. The cell-free supernatant (CFS) of L. paracasei LPH01 demonstrated a strong inhibitory effect, with an inhibition zone diameter of 24.65 ± 0.27 mm and a minimum inhibitory concentration of 12.5 mg/mL. Among the CFS, the fraction over 10 kDa (CFS-10) revealed the best antibacterial effect. Confocal laser scanning microscopes and flow cytometry showed that CFS-10 could reduce cell metabolic activity and cell viability and destroy the integrity and permeability of the cell membrane. A scanning electron microscope revealed that bacterial cells exhibited obvious morphological and ultrastructural changes, which further confirmed the damage of CFS-10 to the cell membrane and cell wall. Findings demonstrated that CFS-10 inhibited the conversion of triglycerides, decreased the production of free fatty acids, and down-regulated the extracellular expression of the lipase gene. This study provides a theoretical basis for the metabolite of L. paracasei LPH01 as a potential antibiotic alternative in cosmeceutical skincare products.


Asunto(s)
Acné Vulgar , Lacticaseibacillus paracasei , Humanos , Propionibacterium acnes , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Inflamación/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124037, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354678

RESUMEN

In this work, we combined three-dimensional (3D) necklace-like Te-Au reticula as novel surface-enhanced Raman scattering (SERS) active substrates with oxidation-reduction displacement reactions to construct a molecular machine for SERS detection. The structurally tunable 3D necklace-like spatial structures generated more active 'hot spots' and thus enhanced the sensitivity of SERS signals. Besides, layers of ultrathin nanowires showed high sequence dependence that ensure the repeatability and abundant hotspots at interparticle gaps and guarantee the high SERS performance of the substrate. A better-localized surface plasmon resonance (LSPR) effect of the sensor was verified by finite-difference time-domain (FDTD) analysis in both Raman intensities and electromagnetic field distributions compared to the citrate-stabilized AuNPs and CTAB-protected AuNRs. The proposed strategy can also serve as a universally amplified and sensitive detection platform for monitoring different molecules, thus achieving an amplification detection of 3,3'-diethylthiatricarbocyanine iodide (DTTCI) are 1 nM and R6G with a low limit of detection of 1 pM. Especially, the intensity of the main vibration of R6G from 30 spots of SERS data with excellent reproducibility (relative standard deviation of 6.25 %). High selectivity and accuracy of the SERS sensor were proved by practical analysis melamine (MM) in milk with a linear calibration curve (R2 = 0.9962) and a limit of detection of 0.75 mg/kg. Our research provides a new perspective to construct 3D SERS sensor from integrated structural design.

19.
Talanta ; 271: 125630, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237280

RESUMEN

Developing the rapid, specific, and sensitive tumor marker NDKA biosensor has become an urgent need in the field of early diagnosis of colorectal cancer (CRC). Surface-enhanced Raman spectroscopy (SERS) with the advantages of high sensitivity, high resolution as well as providing sample fingerprint, enables rapid and sensitive detection of tumor markers. However, many SERS biosensors rely on boosting the quantity of Raman reporter molecules on individual nanoparticle surfaces, which can result in nanoparticle agglomeration, diminishing the stability and sensitivity of NDKA detection. Here, we proposed an immune-like sandwich multiple hotspots SERS biosensor for highly sensitive and stable analysis of NDKA in serum based on molecularly imprinted polymers and NDKA antibody. The SERS biosensor employs an array of gold nanoparticles, which are coated with a biocompatible polydopamine molecularly imprinted polymer as a substrate to specifically capture NDKA. Then the biosensor detects NDKA through Raman signals as a result of the specific binding of NDKA to the SERS nanotag affixed to the capture substrate along with the formation of multiple hotspots. This SERS biosensor not only avoids the aggregation of nanoparticles but also presents a solution to the obstacles encountered in immune strategies for certain proteins lacking multiple antibody or aptamer binding sites. Furthermore, the practical application of the SERS biosensor is validated by the detection of NDKA in serum with the lower limit of detection (LOD) of 0.25 pg/mL, meanwhile can detect NDKA of 10 ng/mL in mixed proteins solution, illustrating high sensitivity and specificity. This immune-like sandwich multiple hotspots biosensor makes it quite useful for the early detection of CRC and also provides new ideas for cancer biomarker sensing strategy in the future.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Detección Precoz del Cáncer , Biomarcadores de Tumor , Proteínas , Anticuerpos , Técnicas Biosensibles/métodos
20.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200323

RESUMEN

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...