Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 128, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354626

RESUMEN

BACKGROUND: Weaning causes redox dyshomeostasis in piglets, which leads to hepatic oxidative damage. Microbe-derived antioxidants (MA) have great potential for anti-oxidation. This study aimed to investigate changes in hepatic redox system, mitochondrial function and apoptosis after weaning, and effects of MA on growth performance and liver health in weaning piglets. METHODS: This study consisted of 2 experiments. In the both experiments, piglets were weaned at 21 days of age. In Exp. 1, at 21 (W0), 22 (W1), 25 (W4), 28 (W7), and 35 (W14) days of age, 6 piglets were slaughtered at each timepoint. In Exp. 2, piglets were divided into 2 groups: one received MA gavage (MA) and the other received saline gavage (CON). At 25 days of age, 6 piglets from each group were sacrificed. RESULTS: In Exp. 1, weaning caused growth inhibition and liver developmental retardation from W0 to W4. The mRNA sequencing between W0 and W4 revealed that pathways related to "regulation of apoptotic process" and "reactive oxygen species metabolic process" were enriched. Further study showed that weaning led to higher hepatic content of reactive oxygen species (ROS), H2O2 and O2-. Weaning enhanced mitochondrial fission and suppressed their fusion, activated mitophagy, thus triggering cell apoptosis. In Exp. 2, MA improved growth performance of piglets with higher average daily gain (ADG) and average daily feed intake (ADFI). The hepatic ROS, as well as products of oxidative damage malonaldehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the MA group decreased significantly than that of the CON group. The MA elevated mitochondrial membrane potential, increased activity of mitochondrial respiratory chain complexes (MRC) I and IV, enhanced mitochondrial fusion and reduced mitophagy, thus decreasing cell apoptosis. CONCLUSIONS: The present study showed that MA improved the growth performance of weaning piglets and reversed weaning-induced oxidative damage, mitochondrial dysfunction, and apoptosis. Our results suggested that MA had promising prospects for maintaining liver health in weaning piglets and provided a reference for studies of liver diseases in humans.

2.
Front Immunol ; 15: 1452946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355254

RESUMEN

Background: Ovarian cancer (OC) is a global malignancy characterized by metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and Telomeres are closely connected with several cancers, but their potential as practical prognostic markers in OC is less well-defined. Methods: Relevant mRNA and clinical data for OC were sourced from The Cancer Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic model was established by univariate/LASSO/multivariate regression analyses. The effectiveness of the TRLs model was evaluated and measured via the nomogram. Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity were evaluated. We validated the expression levels of prognostic genes. Subsequently, PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation assay, transwell assay, and wound healing assay of CAOV3 cells. Results: A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively predict patient survival rates and was successfully validated using external datasets. According to the nomogram, the model could effectively predict prognosis. Furthermore, we detected the levels of regulatory T cells and M2 macrophages were comparatively higher in the high-risk TRLs group, but the levels of activated CD8 T cells and monocytes were the opposite. Finally, the low-risk group was more sensitive to anti-cancer drugs. The mRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in A2780 and CAOV3 cells and CHRM3-AS2 only in A2780 cells. PTPRD-AS1 knockdown decreased the proliferation, cloning, and migration of CAOV3 cells. Conclusion: Our study identified potential biomarkers for the six-TRLs model related to the prognosis of OC.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , ARN Largo no Codificante , Telómero , Humanos , ARN Largo no Codificante/genética , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/mortalidad , Pronóstico , Biomarcadores de Tumor/genética , Telómero/genética , Línea Celular Tumoral , Nomogramas , Persona de Mediana Edad , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
3.
Animals (Basel) ; 14(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272367

RESUMEN

In this study, sixteen Sprague Dawley (SD) female rats and eight SD male rats were co-housed to mate. Pregnant SD female rats were fed with a control diet or an MA diet. Breast milk, maternal ileum, and intestinal samples of the offspring were collected at the day of birth and ten days afterwards. The results showed that the impact of MA was more obvious on the microbiota of mature milk (p = 0.066) than on that of colostrum. In addition, MA additive did not significantly affect maternal ileal microbiota, but affected offsprings' colonic microbiota significantly ten days after birth (p = 0.035). From the day of giving birth to ten days afterwards, in addition to the increase in microbial richness and diversity, at genus level, the dominant bacteria of breastmilk changed from Pseudomonas veronii to Bacillus and Lactococcus. Different from breastmilk microbiota, ten days after giving birth, the maternal ileal microbiota and the offsprings' intestinal microbiota were dominated by Lactobacillus. Instead of ileal microbiota, offsprings' colonic microbiota is a key action site of maternal MA additive. Therefore, the current findings have significant implications for the development of maternal feed aimed at modulating the intestinal microbiota of offspring, ultimately leading to improved health outcomes for both mothers and their offspring.

4.
Sci Rep ; 14(1): 22733, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349744

RESUMEN

Existing research on the detrimental effects of air pollution and its mixture on multiple chronic conditions (MCC) is not yet fully recognized. Our objective was to examine if individual and joint exposure to air pollution is associated with the incidence and patterns of MCC. Totally 10,231 CHARLS 2015 participants aged over 45 years and 1,938 without MCC were followed up in 2018 and 2020. Residential-levelcumulative personal exposure concentrations of PM1, PM10, PM2.5, CO, O3, NO2, SO2, NO3-, Cl-, NH4+, and SO42- at the residential level were determined utilizing a spatio-temporal random forest model with a spatial resolution of 0.1° × 0.1°. In the cross-sectional and longitudinal research, logistic regression, cox regression analysis, and quantile g-computation were utilized to estimate the single and joint effect with MCC and its patterns, respectively. Interaction analyses and stratified analyses were also performed. A correlation was observed between the prevalence of cardiovascular illnesses and the presence of all 11 major air pollutants. PM2.5, PM10, NH4+, NO3-, CO, and SO42- are associated with an increased frequency of respiratory disorders. An increase of PM2.5, PM1, PM10, NO2, and SO2 (a 10 µg/m3 rise), CO (a 0.1 mg/m3 rise), and PMCs (Cl-, NH4+, NO3-, and SO42-) (a 1 µg/m3 rise) corresponded to the HRs (95% CI) for developing MCC of 1.194 (95% CI: 1.043, 1.367), 1.362 (95% CI: 1.073, 1.728), 1.115 (95% CI: 1.026, 1.212), 1.443 (95% CI: 1.151, 1.808), 3.175 (95% CI: 2.291, 4.401), 1.272 (95% CI: 1.149,1.410), 1.382 (95% CI: 1.011, 1.888), 1.107 (95% CI: 1.003, 1.222), 1.035 (95% CI: 0.984, 1.088), and 1.122 (95% CI: 1.086, 1.160), respectively. SO2 was the predominant contributor to the combined effect (HR: 2.083, 95% CI: 1.659-2.508). Gender, age, drinking, and health status could modify the effects of air pollutants on MCC patterns. Long-term exposure to air pollution is correlated to the incidence and patterns of MCC in middle-aged and elderly Chinese individuals. Preventive methods are essential to safeguarding those susceptible to MCC.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Femenino , Masculino , Persona de Mediana Edad , Exposición a Riesgos Ambientales/efectos adversos , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Afecciones Crónicas Múltiples/epidemiología , Estudios Transversales , Incidencia , Estudios Longitudinales , China/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
5.
Aging (Albany NY) ; 16(11): 9918-9932, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850524

RESUMEN

BACKGROUND: Colon cancer (CC) is the most frequently occurring digestive system malignancy and is associated with a dismal prognosis. While super-enhancer (SE) genes have been identified as prognostic markers in several cancers, their potential as practical prognostic markers for CC patients remains unexplored. METHODS: We obtained super-enhancer-related genes (SERGs) from the Human Super-Enhancer Database (SEdb). Transcriptome and relevant clinical data for colon cancer (CC) were sourced from the Gene Expression Omnibus (GEO) database. Subsequently, we identified up-regulated SERGs by the Weighted Gene Co-expression Network Analysis (WGCNA). Prognostic signatures were constructed via univariate and multivariate Cox regression analysis. We then delved into the mechanisms of these predictive genes by examining immune infiltration. We also assessed differential sensitivities to chemotherapeutic drugs between high- and low-SERGs risk patients. The critical gene was further validated using external datasets and finally confirmed by qRT PCR. RESULTS: We established a ten-gene risk score prognostic model (S100A11, LZTS2, CYP2S1, ZNF552, PSMG1, GJC1, NXN, and DCBLD2), which can effectively predict patient survival rates. This model demonstrated effective prediction capabilities in survival rates at 1, 3, and 5 years and was successfully validated using external datasets. Furthermore, we detected significant differences in immune cell infiltration between high- and low-SERGs risk groups. Notably, high-risk patients exhibited heightened sensitivity to four chemotherapeutic agents, suggesting potential benefits for precision therapy in CC patients. Finally, qRT-PCR validation revealed a significant upregulation of LZTS2 mRNA expression in CC cells. CONCLUSION: These findings reveal that the SERGs model could effectively predict the prognosis of CC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Pronóstico , Biomarcadores de Tumor/genética , Transcriptoma , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Femenino , Redes Reguladoras de Genes
6.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790638

RESUMEN

Oxidative stress can induce inflammation and tight junction disruption in enterocytes. The initiation of inflammation is thought to commence with the activation of the ROS/NLRP3/IL-1ß signaling pathway, marking a crucial starting point in the process. In our previous studies, we found that microbe-derived antioxidants (MAs) showed significant potential in enhancing both antioxidant capabilities and anti-inflammatory effects. The main aim of this research was to investigate the ability of MAs to protect cells from oxidative stress caused by H2O2, to reduce inflammatory responses, and to maintain the integrity of tight junction proteins by modulating the ROS/NLRP3/IL-1ß signaling pathway. IPEC-1 cells (1 × 104 cells/well) were initially exposed to 100 mg/L of MAs for 12 h, after which they were subjected to 1 mM H2O2 treatment for 1 h. We utilized small interfering RNA (siRNA) to inhibit the expression of NLRP3 and Nrf2. Inflammatory factors such as IL-1ß and antioxidant enzyme activity levels were detected by ELISA. Oxidative stress marker ROS was examined by fluorescence analysis. The NLRP3/IL-1ß signaling pathway, Nrf2/HO-1 signaling pathway and tight junction proteins (ZO-1 and Occludin) were detected by RT-qPCR or Western blotting. In our research, it was observed that MA treatment effectively suppressed the notable increase in H2O2-induced inflammatory markers (TNF-α, IL-1ß, and IL-18), decreased ROS accumulation, mitigated the expression of NLRP3, ASC, and caspase-1, and promoted the expression of ZO-1 and Occludin. After silencing the NLRP3 gene with siRNA, the protective influence of MAs was observed to be linked with the NLRP3 inflammasome. Additional investigations demonstrated that the treatment with MAs triggered the activation of Nrf2, facilitating its translocation into the nucleus. This process resulted in a notable upregulation of Nrf2, NQO1, and HO-1 expression, along with the initiation of the Nrf2-HO-1 signaling pathway. Consequently, there was an enhancement in the activities of antioxidant enzymes like SOD, GSH-Px, and CAT, which effectively mitigated the accumulation of ROS, thereby ameliorating the oxidative stress state. The antioxidant effectiveness of MAs was additionally heightened in the presence of SFN, an activator of Nrf2. The antioxidant and anti-inflammatory functions of MAs and their role in regulating intestinal epithelial tight junction protein disruption were significantly affected after siRNA knockdown of the Nrf2 gene. These findings suggest that MAs have the potential to reduce H2O2-triggered oxidative stress, inflammation, and disruption of intestinal epithelial tight junction proteins in IPEC-1 cells. This reduction is achieved by blocking the ROS/NLRP3/IL-1ß signaling pathway through the activation of the Nrf2 pathway.

7.
Nat Commun ; 15(1): 2783, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555276

RESUMEN

Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Caenorhabditis elegans/metabolismo , Linaje de la Célula/genética , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica
8.
J Nutr ; 154(4): 1101-1108, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38340959

RESUMEN

BACKGROUND: Weaning usually causes low feed intake and weight loss in piglets, which mobilizes lipid to energize. The microbe-derived antioxidants (MAs) exhibit great potential in antioxidation, anti-inflammation, and metabolic regulation. OBJECTIVES: We aimed to investigate the changes of lipid metabolism postweaning and effects of MA on growth performance and hepatic lipid metabolism in weanling piglets. METHODS: In the first experiment, piglets weaned at 21 d of age were slaughtered on weaning day (d0), 4 (d4), and 14 (d14) postweaning (6 piglets per day). In the second experiment, piglets were divided into 2 groups, receiving MA (MA) and saline gavage (CON), respectively. All piglets were weaned at 21 d of age and 6 piglets from each group were slaughtered at 25 d of age. RESULTS: In experiment 1, the serum triglyceride, total cholesterol (TC), and LDL cholesterol on d4 and d14 declined significantly compared with d0 (P < 0.05). The serum leptin on d0 was higher than that on d4 and d14 (P < 0.05). The serum ghrelin kept increasing from d0 to d14 (P < 0.05). The hepatic hormone-sensitive lipase and adipose triglyceride lipase first increased from d0 to d4 and then decreased from d4 to d14 (P < 0.05). In experiment 2, the average daily gain and average daily feed intake from 21 to 25 d of age increased in the MA group compared with the CON group (P < 0.05). The serum TC, hepatic TC, and glucose of MA group showed a significant increase than that of the CON group (P < 0.05). The expression of SCD1, ACAT2, and PPARγ were upregulated in the MA group (P < 0.05). Contrary to the decreased expression of phosphorylation of adenosine 5'-monophosphate-activated protein kinase alfa subunit (Thr172), the nuclear sterol regulatory element-binding protein 1c, fatty acid synthase, and peroxisome proliferator-activated receptor gamma of MA group increased than that of CON group (P < 0.05). CONCLUSIONS: Weaning promoted hepatic lipolysis and MA could enhance lipid synthesis by regulating adenosine 5'-monophosphate-activated protein kinase alfa subunit-sterol regulatory element-binding protein 1c pathway, thus improving growth performance of weanling piglets.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos , Animales , Antioxidantes/metabolismo , Proteínas Quinasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Porcinos , Destete
9.
Animals (Basel) ; 14(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38254359

RESUMEN

This study aimed to investigate the dynamic changes in hepatic glucose metabolism in response to early weaning. A total of 60 piglets were randomly selected and weaned at 21 days old. Six piglets were slaughtered on the weaning day (d0) and at 1 (d1), 4 (d4), 7 (d7), and 14 (d14) days postweaning. The results illustrated that body weight significantly increased from d4 to d14 (p < 0.001). Serum glucose fell sharply after weaning and then remained at a low level from d1 to d14 (p < 0.001). Serum insulin decreased from d4 (p < 0.001), which caused hepatic glycogen to be broken down (p = 0.007). The glucose-6-phosphatase activity increased from d0 to d4 and then decreased from d4 to d14 (p = 0.039). The pyruvate carboxylase activity presented a significant sustained increase from d0 to d14 (p < 0.001). The succinate (p = 0.006) and oxaloacetate (p = 0.003) content on d4 was lower than that on d0. The succinate dehydrogenase activity (p = 0.008) and ATP (p = 0.016) production decreased significantly on d4 compared to that on d0. Taken together, these findings reveal the dynamic changes of metabolites and enzymes related to hepatic glycometabolism and the TCA (tricarboxylic acid) cycle in piglets after weaning. Our findings enrich weaning stress theory and might provide a reference for dietary intervention.

10.
Adv Mater ; 36(15): e2307151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190759

RESUMEN

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state-of-the-art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub-2-nm pores. Taking advantage of the built-in nanoconfinement feature, the CNF film with nanometer-sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g-1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

11.
Angew Chem Int Ed Engl ; 63(9): e202318063, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38190839

RESUMEN

The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic liquid electrolyte creates the hydrophobic tri-layer interface assembled by first two layers of hydrophobic OTF- and EMIM+ and third layer of loosely attached water, beyond the classical Gouy-Chapman-Stern theory based electrochemical double layer. By taking advantage of the hydrophobic tri-layer interface, the lean-water ionic liquid electrolyte enables a wide electrochemical working window (2.93 V) with relatively high zinc ion conductivity (17.3 mS/cm). Furthermore, the anion crowding interface facilitates the OTF- decomposition chemistry to create the mechanically graded solid electrolyte interface layer to simultaneously suppress the dendrite formation and maintain the mechanical stability. In this way, the lean-water based ionic liquid electrolyte realizes the ultralong cyclability of over 10000 cycles at 20 A/g and at practical condition of N/P ratio of 1.5, the cumulated areal capacity reach 1.8 Ah/cm2 , which outperforms the state-of-the-art zinc metal battery performance. Our work highlights the importance of the stable electrode/electrolyte interface stability, which would be practical for building high energy grid scale zinc-ion battery.

12.
Angew Chem Int Ed Engl ; 63(4): e202313117, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38018329

RESUMEN

Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108  p/s/cm2 /sr at a low concentration of 10 µM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Diagnóstico por Imagen , Fármacos Fotosensibilizantes/química , Luminiscencia
13.
Front Oncol ; 13: 1254439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023181

RESUMEN

Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.

14.
Korean J Radiol ; 24(11): 1142-1150, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37899523

RESUMEN

OBJECTIVE: To evaluate 99mtechnetium-three polyethylene glycol spacers-arginine-glycine-aspartic acid (99mTc-3PRGD2) single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging for diagnosing lymph node metastasis of primary malignant lung neoplasms. MATERIALS AND METHODS: We prospectively enrolled 26 patients with primary malignant lung tumors who underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT imaging. Both imaging methods were analyzed in qualitative (visual dichotomous and 5-point grades for lymph nodes and lung tumors, respectively) and semi-quantitative (maximum tissue-to-background radioactive count) manners for the lymph nodes and lung tumors. The performance of the differentiation of lymph nodes with and without metastasis was determined at the per-lymph node station and per-patient levels using histopathological results as the reference standard. RESULTS: Total 42 stations had metastatic lymph nodes and 136 stations had benign lymph nodes. The differences between metastatic and benign lymph nodes in the visual qualitative and semiquantitative analyses of 99mTc-3PRGD2 SPECT/CT and 18F-FDG PET/CT were statistically significant (all P < 0.001). The area under the receiver operating characteristic curve (AUC) in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT was 0.908 (95% confidence interval [CI], 0.851-0.966), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.86 (36/42), 0.88 (120/136), 0.69 (36/52), and 0.95 (120/126), respectively. Among the 26 patients (including two patients each with two lung tumors), 15 had pathologically confirmed lymph node metastasis. The difference between primary lung lesions in patients with and without lymph node metastasis was statistically significant only in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT (P = 0.007), with an AUC of 0.807 (95% CI, 0.641-0.974). CONCLUSION: 99mTc-3PRGD2 SPECT/CT imaging may notably perform in the direct diagnosis of lymph node metastasis of primary malignant lung tumors and indirectly predict the presence of lymph node metastasis through uptake in the primary lesions.


Asunto(s)
Neoplasias Pulmonares , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Metástasis Linfática/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Radiofármacos
15.
Cell Res ; 33(11): 821-834, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37500768

RESUMEN

Maternal age at childbearing has continued to increase in recent decades. However, whether and how it influences offspring adult traits are largely unknown. Here, using adult body size as the primary readout, we reveal that maternal rather than paternal age has an evolutionarily conserved effect on offspring adult traits in humans, Drosophila, and Caenorhabditis elegans. Elucidating the mechanisms of such effects in humans and other long-lived animals remains challenging due to their long life course and difficulties in conducting in vivo studies. We thus employ the short-lived and genetically tractable nematode C. elegans to explore the mechanisms underlying the regulation of offspring adult trait by maternal aging. By microscopic analysis, we find that old worms transmit aged mitochondria with a donut-like shape to offspring. These mitochondria are rejuvenated in the offspring's early life, with their morphology fully restored before adulthood in an AMPK-dependent manner. Mechanistically, we demonstrate that early-life mitochondrial dysfunction activates AMPK, which in turn not only alleviates mitochondrial abnormalities but also activates TGFß signaling to increase offspring adult size. Together, our findings provide mechanistic insight into the ancient role of maternal aging in shaping the traits of adult offspring.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Caenorhabditis elegans , Animales , Humanos , Adulto , Anciano , Envejecimiento/fisiología , Tamaño Corporal , Mitocondrias
16.
Carbohydr Polym ; 312: 120693, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059515

RESUMEN

In this work, high internal phase emulsions (HIPEs) stabilized by naturally derived cellulose nanocrystals (CNC) and gelatinized soluble starch (GSS) were fabricated to stabilize oregano essential oil (OEO) in the absence of surfactant. The physical properties, microstructures, rheological properties, and storage stability of HIPEs were investigated by adjusting CNC contents (0.2, 0.3, 0.4 and 0.5 wt%) and starch concentration (4.5 wt%). The results revealed that CNC-GSS stabilized HIPEs exhibited good storage stability within one month and the smallest droplets size at a CNC concentration of 0.4 wt%. The emulsion volume fractions of 0.2, 0.3, 0.4 and 0.5 wt% CNC-GSS stabilized HIPEs after centrifugation reached 77.58, 82.05, 94.22, and 91.41 %, respectively. The effect of native CNC and GSS were analyzed to understand the stability mechanisms of HIPEs. The results revealed that CNC could be used as an effective stabilizer and emulsifier to fabricate the stable and gel-like HIPEs with tunable microstructure and rheological properties.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36982076

RESUMEN

Under pressure from the environment and resources, emission peak and carbon neutrality have rapidly become a global issue. The optimization of the ecological goal should be in line with the energy target. In most instances, however, the economic and the ecological goals cannot be unified. This paper establishes a multi-objective optimization model that maximizes the economic benefit of enterprises and the ecosystem activity of the government in the meantime. The idea point method is used in solving this multi-objective optimization problem in the form of a single-objective optimization problem. The numerical experiment documents four types of Chinese enterprises, which are primary resources, industrial manufacturing, public services and commercial consumption. Some management insights are summarized at the end, such as the cores of achieving high-quality and low-carbon development are industrial manufacturing and public services in China.


Asunto(s)
Contaminación del Aire , Carbono , Desarrollo Económico , China , Comercio , Contaminación del Aire/prevención & control
18.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834674

RESUMEN

Obesity induces lipodystrophy and metabolic inflammation. Microbe-derived antioxidants (MA) are novel small-molecule nutrients obtained from microbial fermentation, and have anti-oxidation, lipid-lowering and anti-inflammatory effects. Whether MA can regulate obesity-induced lipodystrophy and metabolic inflammation has not yet been investigated. The aim of this study was to investigate the effects of MA on oxidative stress, lipid disorders, and metabolic inflammation in liver and epididymal adipose tissues (EAT) of mice fed with a high-fat diet (HFD). Results showed that MA was able to reverse the HFD-induced increase in body weight, body fat rate and Lee's index in mice; reduce the fat content in serum, liver and EAT; and regulate the INS, LEP and resistin adipokines as well as free fatty acids to their normal levels. MA also reduced de novo synthesis of fat in the liver and EAT and promoted gene expression for lipolysis, fatty acid transport and ß-oxidation. MA decreased TNF-α and MCP1 content in serum, elevated SOD activity in liver and EAT, induced macrophage polarization toward the M2 type, inhibited the NLRP3 pathway, increased gene expression of the anti-inflammatory factors IL-4 and IL-13 and suppressed gene expression of the pro-inflammatory factors IL-6, TNF-α and MCP1, thereby attenuating oxidative stress and inflammation induced by HFD. In conclusion, MA can effectively reduce HFD-induced weight gain and alleviate obesity-induced oxidative stress, lipid disorders and metabolic inflammation in the liver and EAT, indicating that MA shows great promise as a functional food.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Lipodistrofia , Ratones , Animales , Antioxidantes/farmacología , Dieta Alta en Grasa , Factor de Necrosis Tumoral alfa/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Antiinflamatorios/farmacología , Lipodistrofia/metabolismo , Lípidos/farmacología , Ratones Endogámicos C57BL
19.
J Sci Food Agric ; 103(1): 450-456, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36205212

RESUMEN

BACKGROUND: Nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide, plays an important in anti-aging and disease. Lactococcus lactis, an important probiotic lactic acid bacteria (LAB), has shown great potential for the biosynthesis of NMN, which will significantly affect the probiotic effects of the dairy products. RESULTS: We used the CRISPR/nCas9 technique to knockout nadR gene of L. lactis NZ9000 to enhance the accumulation of NMN by 61%. The nadE* gene from Francisella tularensis with codon optimization was heterologous in L. lactis NZ9000ΔnadR and has a positive effect on NMN production. Combined with optimization of the concentration of substrate nicotinamide, a final intracellular NMN titer was 2289 µmol L-1  mg-1 with 10 g L-1 nicotinamide supplement, which was 5.7-fold higher than that of the control. The transcription levels of key genes (pncA, nadD and prs1) involved in NMN biosynthesis were up-regulated by more than two-fold, indicating that the increase of NMN titer was attributed to FtnadE* heterologous expression. CONCLUSION: Our study provides a better understanding of the NMN biosynthesis pathway in L. lactis, and can facilitate NMN production in LAB via synthetic biology approaches. © 2022 Society of Chemical Industry.


Asunto(s)
Lactococcus lactis , Mononucleótido de Nicotinamida , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , NAD/metabolismo , Niacinamida/metabolismo
20.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552577

RESUMEN

Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...