Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38745413

RESUMEN

Circular single-stranded (ss) DNA viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. Here, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3,185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1 to P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that P3 systematically localizes in plasmodesmata, while and its expression in trans-complementation experiments restores the wild-type phenotype of a movement-deficient plant virus; thus P3 is identified as a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.

2.
Materials (Basel) ; 17(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38673275

RESUMEN

Ecological porous concrete (EPC) is one of the novel formulations of concrete with unique phytogenic properties. However, achieving both low alkalinity and high strength in EPC proves challenging due to the inherently high alkalinity of the pore environment, which hinders the growth of the plant and affects its ecological benefits significantly. This research investigated the utilization of 15 types of chemical admixtures and diatomaceous earth as alkali-reducing agents to optimize the properties of silicate cementitious materials for the applications of EPC. To identify the most effective agents, the pH value and compressive strength of the cement paste were adopted as the screening criteria for the selection of the essential alkali-reducing ingredients. Subsequently, a composite approach combining chemical admixtures and DE was employed to explore the synergistic effects on the pH and strength of silicate cementitious materials. The results revealed that a combination of 8% DE, 5% oxalic acid, and 5% iron sulfate functioned effectively and resulted in desirable performance for the concrete. This synergistic blend effectively consumed a large amount of Ca(OH)2, reducing the pH of cement paste to 10.48 within 3 days. Furthermore, the hydration reaction generated C-S-H with a low Ca/Si ratio, leading to a remarkable increase in the compressive strength of the concrete, reaching 89.7 MPa after 56 days. This composite approach ensured both low alkalinity and high strength in silicate cementitious materials, providing a theoretical basis for the application and promotion of EPC in the ecological field.

3.
Sci Rep ; 14(1): 5677, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454104

RESUMEN

Hypertension is a disease closely related to inflammation, and the systemic immunity-inflammation index (SII) is a new and easily detectable inflammatory marker. We aimed to investigate the association between SII and hypertension risk in a adult population in the US. We utilized data from the National Health and Nutrition Examination Survey spanning from 1999 to 2018, incorporating comprehensive information from adults reporting hypertension. This included details on blood pressure monitoring, complete blood cell counts, and standard biochemical results. The SII was computed as the platelet count multiplied by the neutrophil count divided by the lymphocyte count. We employed a weighted multivariate logistic regression model to examine the correlation between SII and hypertension. Subgroup analyses were conducted to explore potential influencing factors. Furthermore, smooth curve fitting and two-piecewise logistic regression analysis were employed to describe non-linear relationships and identify inflection points. This population-based study involved 44,070 adults aged 20-85 years. Following Ln-transformation of the SII, multivariable logistic regression revealed that, in a fully adjusted model, participants in the highest quartile of Ln(SII) had a 12% increased risk of hypertension compared to those in the lowest quartile, which was statistically significant (OR:1.12; 95% CI 1.01, 1.24; P < 0.001), with a P for trend = 0.019. Subgroup analysis indicated no significant interactions between Ln(SII) and specific subgroups except for the body mass index subgroup (all P for interaction > 0.05). Additionally, the association between Ln(SII) and hypertension displayed a U-shaped curve, with an inflection point at 5.89 (1000 cells/µl). Based on this research result, we found a U-shaped correlation between elevated SII levels and hypertension risk in American adults, with a inflection point of 5.89 (1000 cells)/µl). To validate these findings, larger scale prospective surveys are needed to support the results of this study and investigate potential mechanisms.


Asunto(s)
Hipertensión , Adulto , Humanos , Encuestas Nutricionales , Estudios Prospectivos , Hipertensión/epidemiología , Determinación de la Presión Sanguínea , Inflamación
4.
Int J Food Microbiol ; 411: 110517, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38096676

RESUMEN

This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.


Asunto(s)
Bacillus cereus , Depsipéptidos , Animales , Bacillus cereus/genética , Eméticos/metabolismo , Lactosa/metabolismo , Leche/metabolismo , Depsipéptidos/farmacología
5.
Microbiol Spectr ; 11(6): e0003323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37962342

RESUMEN

IMPORTANCE: A novel botybirnavirus, infecting the tea plant pathogen Didymella theifolia and tentatively named Didymella theifolia botybirnavirus 1 (DtBRV1), together with an additional double-stranded RNA (dsRNA), was characterized. DtBRV1 comprises two dsRNAs (1 and 2) encapsidated in isometric virions, while dsRNA3 is a satellite. The satellite represents a unique specimen since it contains a duplicated region and has high similarity to the two botybirnavirus dsRNAs, supporting the notion that it most likely originated from a deficient genomic component. The biological characteristics of DtBRV1 were further determined. With their unique molecular traits, DtBRV1 and its related dsRNA expand our understanding of virus diversity, taxonomy, and evolution.


Asunto(s)
Ascomicetos , Camellia sinensis , Infección Latente , Virus ARN , ARN Bicatenario/genética , Filogenia , Genoma Viral , Virus ARN/genética , Ascomicetos/genética ,
6.
BMC Genomics ; 24(1): 528, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674131

RESUMEN

BACKGROUND: Colletotrichum camelliae, one of the most important phytopathogenic fungi infecting tea plants (Camellia sinensis), causes brown blight disease resulting in significant economic losses in yield of some sensitive cultivated tea varieties. To better understand its phytopathogenic mechanism, the genetic information is worth being resolved. RESULTS: Here, a high-quality genomic sequence of C. camelliae (strain LT-3-1) was sequenced using PacBio RSII sequencing platform, one of the most advanced Three-generation sequencing platforms and assembled. The result showed that the fungal genomic sequence is 67.74 Mb in size (with the N50 contig 5.6 Mb in size) containing 14,849 putative genes, of which about 95.27% were annotated. The data revealed a large class of genomic clusters potentially related to fungal pathogenicity. Based on the Pathogen Host Interactions database, a total of 1698 genes (11.44% of the total ones) were annotated, containing 541 genes related to plant cell wall hydrolases which is remarkably higher than those of most species of Colletotrichum and others considered to be hemibiotrophic and necrotrophic fungi. It's likely that the increase in cell wall-degrading enzymes reflects a crucial adaptive characteristic for infecting tea plants. CONCLUSION: Considering that C. camelliae has a specific host range and unique morphological and biological traits that distinguish it from other species of the genus Colletotrichum, characterization of the fungal genome will improve our understanding of the fungus and its phytopathogenic mechanism as well.


Asunto(s)
Camellia sinensis , Colletotrichum , Colletotrichum/genética , Genómica , Camellia sinensis/genética ,
7.
PLoS Pathog ; 19(6): e1010889, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37285391

RESUMEN

Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.


Asunto(s)
Virus Fúngicos , Virus ARN , Satélite de ARN , Pestalotiopsis/genética , ARN Bicatenario/genética , Filogenia , ARN Viral/genética , Genoma Viral , Virus Fúngicos/genética , Sistemas de Lectura Abierta
8.
ACS Omega ; 8(13): 12393-12403, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033870

RESUMEN

Polyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity. The stability test indicates that SPC-encapsulated horseradish peroxidase (HRP) exhibits ultrahigh resistance to external harsh conditions and has a longer storage life than that of soluble HRP. The proposed encapsulation strategy enables 7.73-, 2.22-, and 11.66-fold relative activities when working at a pH as low as 3, at a NaCl concentration as high as 500 mM, and at a trypsin concentration as high as 10 mg/mL. We find that SPC encapsulation accelerates the cascade reaction efficiency of HRP and glucose oxidase. Owing to SPCs enhancing the catalytic activity of the loaded enzymes, we established an amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Escherichia coli O157:H7 using HRP-loaded SPCs. The detection sensitivity of SPC-improved ELISA was found to be 280 times greater than that of conventional HRP-based ELISA. Altogether, we provide an elaborate evaluation of 500 nm SPCs on enzyme immobilization and its application in the ultrasensitive detection of foodborne pathogens. This evaluation provides evidence to reveal the potential advantage of SPCs on enzyme immobilization for enzyme-based immunoassays. It has excellent biological activity and strong stability and broadens the application prospect in urine, soy sauce, sewage, and other special samples.

9.
World J Clin Cases ; 11(7): 1549-1559, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36926388

RESUMEN

BACKGROUND: Hyperthyroidism often leads to tachycardia, but there are also sporadic reports of hyperthyroidism with severe bradycardia, such as sick sinus syndrome (SSS) and atrioventricular block. These disorders are a challenge for clinicians. CASE SUMMARY: We describe three cases of hyperthyroidism with SSS and found 31 similar cases in a PubMed literature search. Through the analysis of these 34 cases, we found 21 cases of atrioventricular block and 13 cases of SSS, with 67.6% of the patients experiencing bradycardia symptoms. After drug treatment, temporary pacemaker implantation, or anti-hyperthyroidism treatment, the bradycardia of 27 patients (79.4%) was relieved, and the median recovery time was 5.5 (2-8) d. Only 7 cases (20.6%) needed permanent pacemaker implantation. CONCLUSION: Patients with hyperthyroidism should be aware of the risk of severe bradycardia. In most cases, drug treatment or temporary pacemaker placement is recommended for initial treatment. If the bradycardia does not improve after 1 wk, a permanent pacemaker should be implanted.

10.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851700

RESUMEN

The next-generation sequencing method was developed in the second half of the 2000s and marked the beginning of high-throughput sequencing (HTS) analyses of viral communities [...].


Asunto(s)
Ecología , Virus de Plantas , Virus de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Adv Sci (Weinh) ; 10(3): e2204308, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515275

RESUMEN

To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.


Asunto(s)
Viroides , Viroides/genética , Viroides/metabolismo , ARN Viral/genética , Plantas , Hongos/genética , Hongos/metabolismo
12.
Mikrochim Acta ; 190(1): 6, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471087

RESUMEN

A nanozyme sensor array based on the ssDNA-distensible C3N4 nanosheet sensor elements for discriminating multiple mycotoxins commonly existing in contaminated cereals has been explored. The sensor array exploited (a) three DNA nonspecific sequences (A40, T40, C40) absorbed on the C3N4 nanosheets as sensor elements catalyzing the oxidation of TMB; (b) the presence of five mycotoxins affected the catalytic activity of three nanozymes with various degrees. The parameter (A0-A) was employed as the signal output to obtain the response patterns for different mycotoxins with the same concentration where A0 and A were the absorption peak values at 650 nm of oxTMB in the absence and presence of target mycotoxins, respectively. After the raw data was subjected to principal component analysis, 3D canonical score plots were obtained. The sensor array was capable of separating five mycotoxins from each other with 100% accuracy even if the concentration of the mycotoxins was as low as 1 nM. Moreover, the array performed well in discriminating the mycotoxin mixtures with different ratios. Importantly, the practicality of this sensor array was demonstrated by discriminating the five mycotoxins spiking in corn-free samples in 3D canonical score plots, validating that the sensor array can act as a flexible detection tool for food safety. A nanozyme sensor array was developed based on the ssDNA-distensible C3N4 NSs sensor elements for discriminating muitiple mycotoxins.


Asunto(s)
Micotoxinas , Micotoxinas/análisis , Grano Comestible/química , ADN de Cadena Simple , Zea mays
13.
J Virol Methods ; 309: 114608, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029900

RESUMEN

Pear chlorotic leaf spot associated virus (PCLSaV) belongs to the genus Emaravirus and possesses a genome composed of five negative-sense single-stranded RNA (-ssRNA) segments. This study developed a SYBR green-based reverse transcription quantitative PCR (RT-qPCR) assay for the detection of PCLSaV infecting pear trees. A set of two primers q5-F2/q5-R2 designed based on the viral RNA5 sequences showed high specificity and feasibility for PCLSaV detection. The standard curve was established. RT-qPCR assays showed that PCLSaV content was greatly higher in diseased branch and symptomatic leaf samples than that in un-diseased branch and asymptomatic leaf samples. The RT-qPCR was reliability in the detection of the virus in field and in-vitro cultured pear samples. This technique would be useful for the supervision of the viral disease and the certification of pear planting materials.


Asunto(s)
Pyrus , Virus ARN , Enfermedades de las Plantas , ARN , Virus ARN/genética , ARN Viral/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus Satélites/genética , Sensibilidad y Especificidad
14.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893150

RESUMEN

Amplicon sequencing is a powerful tool for analyzing the fungal composition inside plants, whereas its application for the identification of etiology for plant diseases remains undetermined. Here, we utilize this strategy to clarify the etiology responsible for tea leaf brown-black spot disease (LBSD), a noticeable disease infecting tea plants etiology that remains controversial. Based on the ITS-based amplicon sequencing analysis, Didymella species were identified as separate from Pestalotiopsis spp. and Cercospora sp., which are concluded as the etiological agents. This was further confirmed by the fungal isolation and their specific pathogenicity on diverse tea varieties. Based on the morphologies and phylogenetic analysis constructed with multi-loci (ITS, LSU, tub2, and rpb2), two novel Didymella species-tentatively named D. theae and D. theifolia as reference to their host plants-were proposed and characterized. Here, we present an integrated approach of ITS-based amplicon sequencing in combination with fungal isolation and fulfillment of Koch's postulates for etiological identification of tea plant disease, revealing new etiology for LBSD. This contributes useful information for further etiological identification of plant disease based on amplicon sequencing, as well as understanding, prevention, and management of this economically important disease.

15.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682745

RESUMEN

Botryosphaeria spp. are important phytopathogenic fungi that infect a wide range of woody plants, resulting in big losses worldwide each year. However, their pathogenetic mechanisms and the related virulence factors are rarely addressed. In this study, seven lignin peroxidase (LiP) paralogs were detected in Botryosphaeria kuwatsukai, named BkLiP1 to BkLiP7, respectively, while only BkLiP1 was identified as responsible for the vegetative growth and virulence of B. kuwatsukai as assessed in combination with knock-out, complementation, and overexpression approaches. Moreover, BkLiP1, with the aid of a signal peptide (SP), is translocated onto the cell wall of B. kuwatsukai and secreted into the apoplast space of plant cells as expressed in the leaves of Nicotiana benthamiana, which can behave as a microbe-associated molecular pattern (MAMP) to trigger the defense response of plants, including cell death, reactive oxygen species (ROS) burst, callose deposition, and immunity-related genes up-regulated. It supports the conclusion that BkLiP1 plays an important role in the virulence and vegetative growth of B. kuwatsukai and alternatively behaves as an MAMP to induce plant cell death used for the fungal version, which contributes to a better understanding of the pathogenetic mechanism of Botryosphaeria fungi.


Asunto(s)
Nicotiana , Peroxidasas , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Nicotiana/metabolismo , Virulencia/genética
16.
J Virol ; 96(9): e0031822, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35435725

RESUMEN

In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Colletotrichum/patogenicidad , Colletotrichum/virología , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN
17.
Front Plant Sci ; 13: 761133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251071

RESUMEN

Colletotrichum fructicola infects pear leaves, resulting in two major symptoms: tiny black spots (TS) followed by severe early defoliation and big necrotic lesions (BnL) without apparent damage depending on the pathotypes. How the same fungal species causes different symptoms remains unclear. To understand the molecular mechanism underlying the resulting diseases and the diverse symptoms, two C. fructicola pathogenetic strains (PAFQ31 and PAFQ32 responsible for TS and BnL symptoms, respectively) were inoculated on Pyrus pyrifolia leaves and subjected to transcriptome sequencing at the quiescent stage (QS) and necrotrophic stage (NS), respectively. In planta, the genes involved in the salicylic acid (SA) signaling pathway were upregulated at the NS caused by the infection of each strain. In contrast, the ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA) signaling pathways were specifically related to the TS symptoms caused by the infection of strain PAFQ31, corresponding to the yellowish and early defoliation symptoms triggered by the strain infection. Correspondingly, SA was accumulated in similar levels in the leaves infected by each strain at NS, but JA was significantly higher in the PAFQ31-infected as measured using high-performance liquid chromatography. Weighted gene co-expression network analysis also reveals specific genes, pathways, phytohormones, and transcription factors (TFs) associated with the PAFQ31-associated early defoliation. Taken together, these data suggest that specific metabolic pathways were regulated in P. pyrifolia in response to the infection of two C. fructicola pathotypes resulting in the diverse symptoms: JA, ET, and ABA accumulated in the PAFQ31-infected leaves, which negatively affected the chlorophyll metabolism and photosynthesis pathways while positively affecting the expression of senescence-associated TFs and genes, resulted in leaf yellowing and defoliation; whereas SA inhibited JA-induced gene expression in the PAFQ32-infected leaves, which led to hypersensitive response-like reaction and BnL symptoms.

18.
Biosens Bioelectron ; 206: 114150, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278850

RESUMEN

Despite their potential for signal amplification in immunochromatographic assays (ICAs) with Au nanoparticles (AuNPs) as probes, metal growth methods are of limited practical applicability given their complex non-specificity and lack of robust growth schemes. Here, we propose a novel method of polyallylamine hydrochloride (PAH)-mediated metal growth for the detection of Escherichia coli O157:H7 by AuNP-ICA. The developed method relies on the highly controlled growth of Cu shells on the AuNP core and allows one to achieve highly enhanced colorimetric signals by controlling PAH as the growth framework. The introduction of PAH eliminates the non-specific adsorption of Cu ions on the nitrocellulose membrane and thus provides maximized and effective signal-to-noise ratios to achieve a detection limit of 9.8 CFU/mL for E. coli O157:H7. Moreover, the newly developed detection method exhibits good reproducibility (coefficient of variation <13%), remarkable stability, and practical applicability. The PAH-mediated signal enhancement system paves the way to the realization of stable metal growth methods based on Au, Ag, and other metals and is well suited for the rapid, stable, and sensitive detection of food-borne pathogens using the AuNP-ICA platform.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Nanopartículas del Metal , Microbiología de Alimentos , Oro/química , Inmunoensayo , Nanopartículas del Metal/química , Reproducibilidad de los Resultados
19.
Food Res Int ; 151: 110845, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980383

RESUMEN

Delimitation within the Bacillus cereus group is confusing due to the highly similar genetic background of its constituent bacteria. This study aimed to develop a rapid and efficient method for the identification of Bacillus cereus and Bacillus thuringiensis, two closely related species within the B. cereus group. Using average nucleotide identity analysis (ANI) and ribosomal multilocus sequence typing (rMLST), the authenticity of the genomes of B. cereus and B. thuringiensis was determined. Emetic B. cereus and Bacillus bombysepticus were also included to provide novel genomic insights into the boundaries within the B. cereus group. Using pan-genome analysis, ispD, a novel core and single-copy molecular target, was identified for the differentiation between B. cereus and B. thuringiensis. Based on the single nucleotide polymorphism within ispD, a high resolution melting (HRM) method for the determination of B. cereus and B. thuringiensis was developed. This method can not only distinguish B. cereus and B. thuringiensis, but can also separate B. cereus from other foodborne pathogenic bacteria. The detection limit of this method could reach 1 pg of pure genomic DNA and 3.7 × 102 cfu/mL of pure culture. Moreover, this new method could effectively differentiate B. cereus and B. thuringiensis in spiked, mixed, and real food samples. Collectively, the established HRM method can provide a new reference paradigm for the sensitive and specific nucleic acid detection of pathogens with identical genomes.


Asunto(s)
Bacillus cereus , Bacillus thuringiensis , Bacillus cereus/genética , Bacillus thuringiensis/genética , Genómica , Tipificación de Secuencias Multilocus
20.
Ann Transl Med ; 10(24): 1321, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660677

RESUMEN

Background: Ischemia-reperfusion (IR) injury can occur in the heart, brain, liver, lung, kidney, and other important organs, and may greatly increase disease mortality. MicroRNAs (miRNAs) have a variety of functions, including regulating cell differentiation, proliferation, and apoptosis. In the past 10 years, many studies on miRNAs in IR have been conducted. This study involved a visual analysis of these studies, and a discussion of research hotspots, trends, and frontiers of this topic. Methods: A total of 1,518 articles published between 2012 and 2022 on the topic of miRNA and IR and listed in the Web of Science database were analyzed visually using CiteSpace. Cooperative networks, literature citations, and keyword co-occurrence were analyzed. Results: Of the 1,518 articles, most were published after 2018, and a rapid growth in numbers of publications was seen after 2019. Articles from China numbered the highest, followed by the United States and Canada. It has been found that many miRNAs are involved in the occurrence of IR, with various regulatory mechanisms and signaling pathways. The literature clustering generated by literature co-citation analysis and the keyword co-occurrence network showed that the previous miRNA research on IR had mainly focused on the following topics: myocardial infarction, ischemic stroke, acute kidney injury, oxidative stress, and inflammatory response. More attention has been paid to long noncoding RNA (lncRNA) and exosomes, with much exploration having been conducted in these areas. Conclusions: Although miRNA is involved in the occurrence and development of IR, as a clinical intervention target for IR, further research is still needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA