Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.738
Filtrar
1.
Neural Regen Res ; 20(5): 1467-1482, 2025 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39075913

RESUMEN

JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.

2.
Neural Regen Res ; 20(3): 836-844, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886956

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00028/figure1/v/2024-06-17T092413Z/r/image-tiff Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group (10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.

4.
Adv Sci (Weinh) ; : e2402329, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120980

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.

5.
World J Clin Cases ; 12(22): 4913-4923, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39109030

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is classified under fibrotic interstitial pneumonia, characterized by a chronic and progressive course. The predominant clinical features of IPF include dyspnea and pulmonary dysfunction. AIM: To assess the effects of pirfenidone in the early treatment of IPF on lung function in patients. METHODS: A retrospective analysis was performed on 113 patients with IPF who were treated in our hospital from November 2017 to January 2023. These patients were divided into two groups: control group (n = 53) and observation group (n = 60). In the control group, patients received routine therapy in combination with methylprednisolone tablets, while those in the observation group received routine therapy together with pirfenidone. After applying these distinct treatment approaches to the two groups, we assessed several parameters, including the overall effectiveness of clinical therapy, the occurrence of adverse reactions (e.g., nausea, vomiting, and anorexia), symptom severity scores, pulmonary function index levels, inflammatory marker levels, and the 6-min walk distance before and after treatment in both groups. RESULTS: The observation group exhibited significantly higher rates than the control group after therapy, with a clear distinction (P < 0.05). After treatment, the observation group experienced significantly fewer adverse reactions than the control group, with a noticeable difference (P < 0.05). When analyzing the symptom severity scores between the two groups of patients after treatment, the observation group had significantly lower scores than the control group, with a distinct difference (P < 0.05). When comparing the pulmonary function index levels between the two groups of patients after therapy, the observation group displayed significantly higher levels than the control group, with a noticeable difference (P < 0.05). Evaluating the inflammatory marker data (C-reactive protein, interleukin-2 [IL-2], and IL-8) between the two groups of patients after therapy, the observation group exhibited significantly lower levels than the control group, with significant disparities (P < 0.05). Comparison of the 6-min walking distance data between the two groups of patients after treatment showed that the observation group achieved significantly greater distances than the control group, with a marked difference (P < 0.05). CONCLUSION: Prompt initiation of pirfenidone treatment in individuals diagnosed with IPF can enhance pulmonary function, elevate inflammatory factor levels, and increase the distance covered in the 6-min walk test. This intervention is conducive to effectively decreasing the occurrence of adverse reactions in patients.

6.
Cancer Immunol Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115356

RESUMEN

The efficacy of immune checkpoint inhibitors (ICI) in the treatment of hepatocellular carcinoma (HCC) remains limited, highlighting the need for further investigation into the underlying mechanisms. Accumulating evidence indicates that tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) are implicated in immune evasion and treatment resistance. This study aimed to explore the contribution of TAMs in the HCC TME. Our findings reveal the critical involvement of CX3C motif chemokine receptor 1 (CX3CR1)-positive TAMs in inducing T cell exhaustion through interleukin-27 (IL-27) secretion, providing valuable insights into the mechanisms underlying the suboptimal efficacy of anti-PD-1 therapy in HCC. Moreover, we identified prostaglandin E2 (PGE2), released by immune-attacked tumor cells, as a key regulator of CX3CR1+ TAM phenotype transition. To augment the therapeutic response to current anti-PD-1 therapy, we propose an innovative treatment strategy that incorporates targeting CX3CR1+ TAMs in addition to anti-PD-1 therapy. In conclusion, our study contributes to the understanding of TAMs' role in cancer immunotherapy and highlights potential clinical implications for HCC treatment. The combination of targeting CX3CR1+ TAMs with anti-PD-1 therapy holds promise for enhancing the efficacy of immunotherapeutic interventions in HCC patients.

7.
J Transl Med ; 22(1): 751, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123227

RESUMEN

Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.


Asunto(s)
Antígeno B7-H1 , Antígeno CTLA-4 , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales , Resultado del Tratamiento
8.
Physiol Plant ; 176(4): e14473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129661

RESUMEN

The jasmonic acid (JA) signaling pathway plays an important role in plant responses to abiotic stresses. The PEAPOD (PPD) and jasmonate ZIM-domain (JAZ) protein in the JA signaling pathway belong to the same family, but their functions in regulating plant defense against salt stress remain to be elucidated. Here, Gossypium arboreum PPD2 was overexpressed in Arabidopsis thaliana and systematically silenced in cotton for exploring its function in regulating plant defense to salt stress. The GaPPD2-overexpressed Arabidopsis thaliana plants significantly increased the tolerance to salt stress compared to the wild type in both medium and soil, while the GaPPD2-silenced cotton plants showed higher sensitivity to salt stress than the control in pots. The antioxidant activities experiment showed that GaPPD2 may mitigate the accumulation of reactive oxygen species by promoting superoxide dismutase accumulation, consequently improving plant resilience to salt stress. Through the exogenous application of MeJA (methy jasmonate) and the protein degradation inhibitor MG132, it was found that GaPPD2 functions in plant defense against salt stress and is involved in the JA signaling pathway. The RNA-seq analysis of GaPPD2-overexpressed A. thaliana plants and receptor materials showed that the differentially expressed genes were mainly enriched in antioxidant activity, peroxidase activity, and plant hormone signaling pathways. qRT-PCR results demonstrated that GaPPD2 might positively regulate plant defense by inhibiting GH3.2/3.10/3.12 expression and activating JAZ7/8 expression. The findings highlight the potential of GaPPD2 as a JA signaling component gene for improving the cotton plant resistance to salt stress and provide insights into the mechanisms underlying plant responses to environmental stresses.


Asunto(s)
Arabidopsis , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Gossypium , Oxilipinas , Proteínas de Plantas , Raíces de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Gossypium/efectos de los fármacos , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Tolerancia a la Sal/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Angew Chem Int Ed Engl ; : e202412548, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136324

RESUMEN

Aiming at the further extension of the application scope of traditional molecular muscles, a novel bispyrene-functionalized chiral molecular [c2]daisy chain was designed and synthesized. Taking advantage of the unique dimeric interlocked structure of molecular [c2]daisy chain, the resultant chiral molecular muscle emits strong circularly polarized luminescence (CPL) attributed to the pyrene excimer with a high dissymmetry factor (glum) value of 0.010. More importantly, along with the solvent- or anion- induced motions of the chiral molecular muscle, the precise regulation of the pyrene stacking within its skeleton results in the switching towards either "inversed" state with sign inversion and larger glum values or "down" state with maintained handedness and smaller glum values, making it a novel multistate CPL switch. As the first example of chiral molecular muscle-based CPL switch, this proof-of-concept study not only successfully widens the application scopes of molecular muscles, but also provides a promising platform for the construction of novel smart chiral luminescent materials for practical applications.

10.
J Thromb Haemost ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122189

RESUMEN

BACKGROUND AND OBJECTIVE: Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to non-canonical signaling by activated protein C (APC). METHODS: Mice with whole body and hepatocyte-selective PAR1 deficiency, as well as PAR1 R41Q and R46Q mice were fed a high fat diet to induce MASLD. RESULTS AND CONCLUSIONS: High fat diet (HFD)-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum ALT activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, non-canonical anti-inflammatory signaling. NRD-21 treatment reduced plasma TNFα, serum ALT activity, hepatic steatosis, and insulin resistance (HOMA-IR), but increased plasma active GLP-1. The results suggest non-hepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacological modulation of PAR1 yields multiple metabolic benefits in experimental obesity.

11.
Phys Rev Lett ; 133(3): 033602, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094149

RESUMEN

With an extremely high dimensionality, the spatial degree of freedom of entangled photons is a key tool for quantum foundation and applied quantum techniques. To fully utilize the feature, the essential task is to experimentally characterize the multiphoton spatial wave function including the entangled amplitude and phase information at different evolutionary stages. However, there is no effective method to measure it. Quantum state tomography is costly, and quantum holography requires additional references. Here, we introduce quantum Shack-Hartmann wavefront sensing to perform efficient and reference-free measurement of the biphoton spatial wave function. The joint probability distribution of photon pairs at the back focal plane of a microlens array is measured and used for amplitude extraction and phase reconstruction. In the experiment, we observe that the biphoton amplitude correlation becomes weak while phase correlation shows up during free-space propagation. Our work is a crucial step in quantum physical and adaptive optics and paves the way for characterizing quantum optical fields with high-order correlations or topological patterns.

12.
BMC Gastroenterol ; 24(1): 246, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097693

RESUMEN

BACKGROUND: Eosinophilic esophagitis is a chronic inflammatory disorder of the esophagus. This real-world study used patient and physician surveys to describe the clinical characteristics and disease burden of eosinophilic esophagitis-overall and in a subgroup of patients with dysphagia despite treatment. METHODS: Data analyzed in this study were collected in 2020 from US and EU patients with eosinophilic esophagitis. Eligible patients were aged ≥ 12 years with a diagnosis of eosinophilic esophagitis, had an esophageal count of ≥ 15 eosinophils/high-power field at diagnosis, and were currently prescribed treatment for eosinophilic esophagitis. RESULTS: Overall, 1001 patients were included, of whom 356 (36%) had dysphagia despite treatment. Demographics and clinical characteristics were similar in both populations. The severity of eosinophilic esophagitis was mild in more patients overall (69%) versus those with dysphagia despite treatment (48%). Patient disease history was similar in both populations, with some exceptions: common patient-reported symptoms were dysphagia (70% and 86%) and heartburn/acid reflux (55% and 49%), and common physician-reported symptoms were dysphagia (75% and 91%) and food impaction (46% and 52%). Treatment history was similar in both populations; overall, the most common treatments were proton pump inhibitors (83%) and topical corticosteroids (51%). Patients reported slightly more days with symptoms, higher impacts on activities of daily living, and slightly higher anxiety or depression in the dysphagia-despite-treatment population versus the overall population. CONCLUSIONS: Eosinophilic esophagitis presents severe symptoms and comorbidities that substantially impact patients' well-being and quality of life. Greater awareness of and novel treatments for eosinophilic esophagitis are needed.


Asunto(s)
Costo de Enfermedad , Trastornos de Deglución , Esofagitis Eosinofílica , Medición de Resultados Informados por el Paciente , Inhibidores de la Bomba de Protones , Humanos , Esofagitis Eosinofílica/epidemiología , Esofagitis Eosinofílica/complicaciones , Esofagitis Eosinofílica/terapia , Masculino , Femenino , Trastornos de Deglución/etiología , Trastornos de Deglución/epidemiología , Persona de Mediana Edad , Inhibidores de la Bomba de Protones/uso terapéutico , Adulto , Índice de Severidad de la Enfermedad , Calidad de Vida , Pirosis/etiología , Corticoesteroides/uso terapéutico , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/epidemiología , Anciano , Adolescente , Adulto Joven
13.
J Inflamm Res ; 17: 5093-5112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099664

RESUMEN

Background: Sepsis continues to exert a significant impact on morbidity and mortality in clinical settings, with immunosuppression, multi-organ failure, and disruptions in gut microbiota being key features. Although rheinic acid and tanshinone IIA show promise in mitigating macrophage apoptosis in sepsis treatment, their precise targeting of macrophages remains limited. Additionally, the evaluation of intestinal flora changes following treatment, which plays a significant role in subsequent cytokine storms, has been overlooked. Leveraging the innate inflammation chemotaxis of tumor cell-derived exosomes allows for their rapid recognition and uptake by activated macrophages, facilitating phenotypic changes and harnessing anti-inflammatory effects. Methods: We extracted exosomes from H1299 cells using a precipitation method. Then we developed a tumor cell-derived exosomal hybrid nanosystem loaded with rhubarbic acid and tanshinone IIA (R+T/Lipo/EXO) for sepsis treatment. In vitro studies, we verify the anti-inflammatory effect and the mechanism of inhibiting cell apoptosis of nano drug delivery system. The anti-inflammatory effects, safety, and modulation of intestinal microbiota by the nanoformulations were further validated in the in vivo study. Results: Nanoformulation demonstrated enhanced macrophage internalization, reduced TNF-α expression, inhibited apoptosis, modulated intestinal flora, and alleviated immunosuppression. Conclusion: R+T/Lipo/EXO presents a promising approach using exosomal hybrid nanosystems for treating sepsis.

14.
Water Res X ; 23: 100229, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099803

RESUMEN

Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.

15.
Adv Mater ; : e2309572, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096076

RESUMEN

The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.

16.
Diabetol Metab Syndr ; 16(1): 191, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118173

RESUMEN

BACKGROUND: This study aims to evaluate the association of metabolic syndrome (MetS) with the risk of all-cause mortality in elderly patients with acute respiratory distress syndrome (ARDS). METHODS: Elderly ARDS patients (≥ 65 years) enrolled from our hospital between January 2018 and July 2023 were divided into the MetS group or the non-MetS group. The outcomes were 28-day and 90-day all-cause mortality rates in the total population and two subgroups stratified by age (65-75 years and ≥ 75 years). Multivariate Cox regression was employed to assess the association of MetS with all-cause mortality, after controlling for potential cofounding factors. RESULTS: A total of 946 patients were divided into the MetS group (n = 410) or the non-MetS group (n = 536). The 28-day and 90-day all-cause mortality rates were significantly higher for MetS group compared to non-MetS group in the total population and two subgroups (all P < 0.01). Multivariate Cox regression indicated that MetS was significantly associated with a higher risk of 90-day all-cause mortality in the total population (HR = 1.62, 95% CI: 1.22-2.15; P < 0.01), and subgroups of patients aged 65-75 years (HR = 1.52, 95% CI: 1.04-2.21; P = 0.03) and ≥ 75 years (HR = 1.90, 95% CI: 1.23-2.94; P < 0.01). Moreover, with each MetS criterion added from 0 to 1 to 2, 3, and 4 of 4 criteria, both 28-day and 90-day all-cause mortality rates significantly increased (both P < 0.01). CONCLUSION: MetS was associated with higher risks of 28-day and 90-day all-cause mortality in elderly patients with ARDS.

17.
Quant Imaging Med Surg ; 14(8): 5721-5736, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144013

RESUMEN

Background: The contrasted-enhanced ultrasound thyroid imaging reporting and data system (CEUS TI-RADS) is the first international risk stratification system for thyroid nodules based on conventional ultrasound (US) and CEUS. This study aimed to evaluate the diagnostic efficacy of CEUS TI-RADS for benign and malignant thyroid nodules and to assess the related interobserver agreement. Methods: The study recruited 433 patients who underwent thyroid US and CEUS between January 2019 and June 2023 at the Affiliated Hospital of Guangdong Medical University. A retrospective analysis of 467 thyroid nodules confirmed by fine-needle aspiration (FNA) and/or surgery was performed. Further, a CEUS TI-RADS classification was assigned to each thyroid nodule based on the CEUS TI-RADS scoring criteria for the US and CEUS features of the nodule. The nodules were grouped based on their sizes as follows: size ≤1 cm, group A; size >1 and ≤4 cm, group B; and size >4 cm, group C. Multivariate logistic regression was used to analyze independent risk factors for malignant thyroid nodules. Pathological assessment was the reference standard for establishing the sensitivity (SEN), specificity (SPE), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) of CEUS TI-RADS in diagnosing malignant thyroid nodules. The area under the curve (AUC) in the receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficacy of the scoring system in predicting malignancy in three groups of nodules. The intragroup correlation coefficient (ICC) was adopted to assess the interobserver agreement of the CEUS TI-RADS score. Results: Out of the 467 thyroid nodules, 262 were malignant and 205 were benign. Logistic regression analysis revealed that the independent risk factors for malignant thyroid nodules included punctate echogenic foci (P<0.001), taller-than-wide shape (P=0.015), extrathyroidal invasion (P=0.020), irregular margins/lobulation (P=0.036), hypoechoicity on US (P=0.038), and hypoenhancement on CEUS (P<0.001). The AUC for the CEUS TI-RADS in diagnosing malignant thyroid nodules was 0.898 for all nodules, 0.795 for group A, 0.949 for group B, and 0.801 for group C, with the optimal cutoff values of the CEUS TI-RADS being 5 points, 6 points, 5 points, and 5 points, respectively. Among these groups of nodules, group B had the highest AUC, with the SEN, SPE, ACC, PPV, and NPV for diagnosing malignant nodules being 95.9%, 88.1%, 92.8%, 92.6%, and 93.2%, respectively. The ICC of the CEUS TI-RADS classification between senior and junior physicians was 0.862 (P<0.001). Conclusions: In summary, CEUS TI-RADS demonstrated significant efficacy in distinguishing thyroid nodules. Nonetheless, there were variations in its capacity to detect malignant nodules across diverse sizes, and it demonstrate optimal performance in 1- to 4-cm nodules. These findings may serve as important insights for clinical diagnoses.

18.
China CDC Wkly ; 6(29): 713-718, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39050019

RESUMEN

What is already known about this topic?: Mental health issues in Chinese children and adolescents have emerged as a substantial public health concern, causing distress and strain among families and society. What is added by this report?: This study examines the effects of gender and school grade on mental health symptoms and risky behaviors among Chinese children and adolescents, with a particular focus on the role of family and school environments. What are the implications for public health practice?: Caregivers and educators should enhance their awareness and skills in supporting the mental health of children. These findings offer critical insights for the early detection and intervention of mental health issues in Chinese children and adolescents.

19.
Front Oncol ; 14: 1388868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050579

RESUMEN

Background: Cuproptosis is copper-induced cell death. Copper metabolism related genes (CMRGs) were demonstrated that used to assess the prognosis out of tumors. In the study, CMRGs were tested for their effect on TME cell infiltration in Ewing's sarcoma (ES). Methods: The GEO and ICGC databases provided the mRNA expression profiles and clinical features for downloading. In the GSE17674 dataset, 22prognostic-related copper metabolism related genes (PR-CMRGs) was identified by using univariate regression analysis. Subsequently, in order to compare the survival rates of groups with high and low expression of these PR-CMRGs,Kaplan-Meier analysis was implemented. Additionally, correlations among them were examined. The study employed functional enrichment analysis to investigate probable underlying pathways, while GSVA was applied to evaluate enriched pathways in the ES (Expression Set). Through an unsupervised clustering algorithm, samples were classified into two clusters, revealing significant differences in survival rates and levels of immune infiltration. Results: Using Lasso and step regression methods, five genes (TFRC, SORD, SLC11A2, FKBP4, and AANAT) were selected as risk signatures. According to the Kaplan-Meier survival analysis, the high-risk group had considerably lower survival rates than the low-risk group(p=6.013e-09). The area under the curve (AUC) values for the receiver operating characteristic (ROC) curve were 0.876, 0.883, and 0.979 for 1, 3, and 5 years, respectively. The risk model was further validated in additional datasets, namely GSE63155, GSE63156, and the ICGC datasets. To aid in outcome prediction, a nomogram was developed that incorporated risk levels and clinical features. This nomogram's performance was effectively validated through calibration curves.Additionally, the study evaluated the variations in immune infiltration across different risk groups, as well as high-expression and low-expression groups. Importantly, several drugs were identified that displayed sensitivity, offering potential therapeutic options for ES. Conclusion: The findings above strongly indicate that CMRGs play crucial roles in predicting prognosis and immune status in ES.

20.
Int J Numer Method Biomed Eng ; : e3855, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051141

RESUMEN

Computational fluid dynamics (CFD) simulations have shown great potentials in cardiovascular disease diagnosis and postoperative assessment. Patient-specific and well-tuned boundary conditions are key to obtaining accurate and reliable hemodynamic results. However, CFD simulations are usually performed under non-patient-specific flow conditions due to the absence of in vivo flow and pressure measurements. This study proposes a new method to overcome this challenge by tuning inlet boundary conditions using data extracted from electrocardiogram (ECG). Five patient-specific geometric models of type B aortic dissection were reconstructed from computed tomography (CT) images. Other available data included stoke volume (SV), ECG, and 4D-flow magnetic resonance imaging (MRI). ECG waveforms were processed to extract patient-specific systole to diastole ratio (SDR). Inlet boundary conditions were defined based on a generic aortic flow waveform tuned using (1) SV only, and (2) with ECG and SV (ECG + SV). 4D-flow MRI derived inlet boundary conditions were also used in patient-specific simulations to provide the gold standard for comparison and validation. Simulations using inlet flow waveform tuned with ECG + SV not only successfully reproduced flow distributions in the descending aorta but also provided accurate prediction of time-averaged wall shear stress (TAWSS) in the primary entry tear (PET) and abdominal regions, as well as maximum pressure difference, ∆Pmax, from the aortic root to the distal false lumen. Compared with simulations with inlet waveform tuned with SV alone, using ECG + SV in the tuning method significantly reduced the error in false lumen ejection fraction at the PET (from 149.1% to 6.2%), reduced errors in TAWSS at the PET (from 54.1% to 5.7%) and in the abdominal region (from 61.3% to 11.1%), and improved ∆Pmax prediction (from 283.1% to 18.8%) However, neither of these inlet waveforms could be used for accurate prediction of TAWSS in the ascending aorta. This study demonstrates the importance of SDR in tailoring inlet flow waveforms for patient-specific hemodynamic simulations. A well-tuned flow waveform is essential for ensuring that the simulation results are patient-specific, thereby enhancing the confidence and fidelity of computational tools in future clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...