Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Insect Biochem Mol Biol ; : 104137, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759703

RESUMEN

Scorpion venom is a potent natural source for antitumor drug development due to the multiple action modes of anticancer components. Although the sequence of Androcin 18-1 has been identified from the transcriptome profile of the scorpion venom Androctonus bicolor, its bioactivity remains unclear. In this study, we described the antitumor mechanism whereby Androcin 18-1 inhibits the proliferation and induces apoptosis by inducing cell membrane disruption, ROS accumulation, and mitochondrial dysfunction in human U87 glioblastoma cells. Moreover, Androcin 18-1 could suppress cell migration via the mechanisms associated with cytoskeleton disorganization and MMPs/TIMPs expression regulation. The discovery of this work highlights the potential application of Androcin 18-1 in drug development for glioblastoma treatment.

2.
Int J Biol Macromol ; 269(Pt 2): 132158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718997

RESUMEN

Atmospheric water harvesting (AWH) technology has attracted significant attention as an effective strategy to tackle the global shortage of freshwater resources. Work has focused on the use of hydrogel-based composite adsorbents in water harvesting and water conservation. The approaches adopted to make use of hygroscopic inorganic salts which subject to a "salting out" effect. In this study, we report the first use of modified UIO-66-NH2 as a functional steric cross-linker and Sa-son seed gum was used as polymeric substrate to construct super hygroscopic hydrogels by free radical copolymerization. The maximum water uptake on SMAGs (572 cm3·g-1) outperforms pure UIO-66-NH2 (317 cm3·g-1). Simultaneously, our first attempt to use it for anti-evaporation applications in an arid environment (Lanzhou, China) simulating sandy areas. The evaporation rate of the anti-evaporation material treated with 0.20 % super moisture-absorbent gels (SMAGs) decreased by 6.1 % over 64 h period under natural condition in Lanzhou, China. The prepared material can not only absorb liquid water but also water vapor, which can provide a new way for water collection and conservation technology. The design strategy of this material has wide applications ranging from atmospheric water harvesting materials to anti-evaporation technology.


Asunto(s)
Estructuras Metalorgánicas , Gomas de Plantas , Vapor , Agua , Estructuras Metalorgánicas/química , Gomas de Plantas/química , Agua/química , Hidrogeles/química , Semillas/química , Polímeros/química , Adsorción
3.
Stem Cell Res ; 77: 103439, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38761687

RESUMEN

Hypophosphatemic vitamin D-resistant rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. In this report, the SMUSHi005-A human induced pluripotent stem cell (hiPSC) line was successfully established from the PBMCs of a female patient carrying the PHEX mutation with c.1586-1586+1 delAG. The iPSC line has been confirmed to have a normal karyotype. The displayed cells clearly exhibit characteristics similar to embryonic stem cells, expressing pluripotency markers and demonstrating the ability to differentiate into three germ layers.

4.
Front Immunol ; 15: 1344878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444844

RESUMEN

Protease inhibitors regulate various biological processes and prevent host tissue/organ damage. Specific inhibition/regulation of proteases is clinically valuable for treating several diseases. Psoriasis affects the skin in the limbs and scalp of the body, and the contribution of cysteine and serine proteases to the development of skin inflammation is well documented. Cysteine protease inhibitors from ticks have high specificity, selectivity, and affinity to their target proteases and are efficient immunomodulators. However, their potential therapeutic effect on psoriasis pathogenesis remains to be determined. Therefore, we tested four tick cystatins (Sialostatin L, Sialostatin L2, Iristatin, and Mialostatin) in the recently developed, innate immunity-dependent mannan-induced psoriasis model. We explored the effects of protease inhibitors on clinical symptoms and histological features. In addition, the number and percentage of immune cells (dendritic cells, neutrophils, macrophages, and γδT cells) by flow cytometry, immunofluorescence/immunohistochemistry and, the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-22, IL-23, and IL-17 family) by qPCR were analyzed using skin, spleen, and lymph node samples. Tick protease inhibitors have significantly decreased psoriasis symptoms and disease manifestations but had differential effects on inflammatory responses and immune cell populations, suggesting different modes of action of these inhibitors on psoriasis-like inflammation. Thus, our study demonstrates, for the first time, the usefulness of tick-derived protease inhibitors for treating skin inflammation in patients.


Asunto(s)
Dermatitis , Psoriasis , Humanos , Inhibidores de Cisteína Proteinasa , Mananos , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inhibidores de Proteasas , Inmunidad Innata , Endopeptidasas , Péptido Hidrolasas
5.
Stem Cell Res ; 76: 103357, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412658

RESUMEN

INF2 mutations cause Charcot-Marie-Tooth disease (CMT), and /or focal segmental glomerulosclerosis (FSGS) in an autosomal dominant inheritance mode, whose underlying mechanism remainsunclear. Here, we report the generation of an iPSC line from a female patient with CMT and FSGS. The iPSC line from the patient's PBMCscarried aheterozygous INF2 deletion mutation (c.315_323delGCGCGCCGT) within the conserved E2. This line exhibited a normal karyotype, high expression of pluripotency markers, and trilineage differentiation potential. This line can be used to dissect the complex pathomechanism through further induction of differentiation into related cells and as a drug screening tool for INF2-associated diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Glomeruloesclerosis Focal y Segmentaria , Células Madre Pluripotentes Inducidas , Humanos , Femenino , Glomeruloesclerosis Focal y Segmentaria/genética , Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Forminas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación
6.
Int J Biol Macromol ; 259(Pt 2): 129289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211910

RESUMEN

FS145, a protein containing a WGD motif, was previously described from the salivary transcriptome of the flea Xenopsylla cheopis. Nevertheless, its biological function and complete structure are still uncertain. Herein, FS145 was confirmed to adopt a common αßß structure with the WGD motif exposed on its surface and located right at the top of a loop composed of residues 72-81. Furthermore, FS145 dose-dependently inhibited the proliferation, adhesion, migration, and tube formation of HUVECs by not only binding to integrin αvß3 but also by subsequently inactivating the FAK/Src/MAPK pathway along with the reduction of the expression of MMP-2, MMP-9, VEGFA, bFGF, Ang2, Tie2, HIF-1α, and FAK. Moreover, FS145 also inhibited aortic vessel sprout and showed strong anti-angiogenic activities as assessed ex vivo, by employing the rat aortic ring assay, chick embryo chorioallantoic membrane, and zebrafish embryo models. Altogether, our results suggest that FS145 suppresses angiogenesis ex vivo and in vitro by blocking integrin αvß3. The current study reveals the first anti-angiogenesis disintegrin with WGD motif from invertebrates and provides a beneficial pharmacological activity to inhibit abnormal angiogenesis.


Asunto(s)
Desintegrinas , Siphonaptera , Embrión de Pollo , Ratas , Animales , Desintegrinas/farmacología , Desintegrinas/química , Integrina alfaVbeta3/metabolismo , Siphonaptera/metabolismo , Angiogénesis , Pez Cebra/metabolismo , Células Cultivadas , Neovascularización Fisiológica , Movimiento Celular , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química
7.
Stem Cell Res ; 74: 103286, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141357

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Affected patients experience gradual loss of their spinal cord and cortical motor neurons with consequent muscle weakness and emaciation, and eventual respiratory failure. The pathogenesis of ALS remains largely unknown although the FUS (sarcoma fusion gene) gene is known to be one of the major pathogenic genes. We have generated an induced pluripotent stem cell line SMUSHi002-A from an ALS patient who carries a heterozygous mutation c.1562G > A in FUS. This cell line will serve as a useful model to investigate disease pathogenesis and develop potential therapeutic approaches for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas Motoras/metabolismo , Mutación/genética , Proteína FUS de Unión a ARN/genética
8.
Zool Res ; 45(1): 108-124, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114437

RESUMEN

Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αßß conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.


Asunto(s)
Discinesias , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , 1-Metil-4-fenilpiridinio/farmacología , 1-Metil-4-fenilpiridinio/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catelicidinas/metabolismo , Discinesias/tratamiento farmacológico , Discinesias/veterinaria , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Enfermedad de Parkinson/veterinaria
9.
J Med Chem ; 66(23): 16002-16017, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38015459

RESUMEN

Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 µg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-ß-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.


Asunto(s)
Células Endoteliales , Receptores de Neuroquinina-1 , Ratones , Animales , Receptores de Neuroquinina-1/metabolismo , Piel/metabolismo , Cicatrización de Heridas , Péptidos/farmacología , Medicina Tradicional
10.
Int J Oral Sci ; 15(1): 46, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752101

RESUMEN

Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.


Asunto(s)
Fibromatosis Gingival , Cinesinas , Animales , Humanos , Ratones , Fibromatosis Gingival/genética , Fibromatosis Gingival/patología , Encía , Cinesinas/genética , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética
11.
Chem Commun (Camb) ; 59(79): 11827-11830, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37712301

RESUMEN

We report well-dispersed highly emitting perovskite emitters synthesized via the surfactant-assisted ball-milling method. Both the emitting peaks and the colour purity of the synthesized perovskite emitters can be effectively tuned through additive functionalization and precursor engineering.

12.
J Med Chem ; 66(17): 11869-11880, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37610210

RESUMEN

Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact ß-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.


Asunto(s)
Pancreatitis , Animales , Ratones , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad Aguda , Tripsina , Anfibios , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
13.
Eur J Pharmacol ; 956: 175941, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37536626

RESUMEN

Chansu, a mixture extracted from Duttaphrynus melanostictus or Bufo gargarizans Cantor, is a traditional Chinese medicine with a broad range of medical applications. However, the peptides/proteins in it have not received adequate attention. Herein, a Cathelicidin-DM-derived peptide named Cath-DM-NT was identified from the skin of D. melanostictus. Previous studies have shown that Cathelicidin-DM has significant antibacterial activity, while Cath-DM-NT has no antibacterial activity. In this study, Cath-DM-NT is found to have lectin-like activity which can agglutinate erythrocytes and bacteria, and bind to lipopolysaccharide (LPS). In addition, Cath-DM-NT has antioxidant activity, which can scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) radicals and reduce Fe3+. Consistently, Cath-DM-NT can protect PC12 cells from H2O2-induced oxidative damage and carrageenan-induced paw edema, reduce malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation, and restore superoxide dismutase (SOD) and glutathione (GSH) levels. Our study suggests that Cath-DM-NT can serve as a lead compound for the development of drugs with dual lectin and antioxidant effects.


Asunto(s)
Antioxidantes , Catelicidinas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/química , Lectinas/farmacología , Peróxido de Hidrógeno/farmacología , Glutatión , Bufonidae
14.
Curr Med Sci ; 43(3): 445-455, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37191939

RESUMEN

OBJECTIVE: Acute lung injury (ALI) is an acute clinical syndrome characterized by uncontrolled inflammation response, which causes high mortality and poor prognosis. The present study determined the protective effect and underlying mechanism of Periplaneta americana extract (PAE) against lipopolysaccharide (LPS)-induced ALI. METHODS: The viability of MH-S cells was measured by MTT. ALI was induced in BALB/c mice by intranasal administration of LPS (5 mg/kg), and the pathological changes, oxidative stress, myeloperoxidase activity, lactate dehydrogenase activity, inflammatory cytokine expression, edema formation, and signal pathway activation in lung tissues and bronchoalveolar lavage fluid (BALF) were examined by H&E staining, MDA, SOD and CAT assays, MPO assay, ELISA, wet/dry analysis, immunofluorescence staining and Western blotting, respectively. RESULTS: The results revealed that PAE obviously inhibited the release of proinflammatory TNF-α, IL-6 and IL-1ß by suppressing the activation of MAPK/Akt/NF-κB signaling pathways in LPS-treated MH-S cells. Furthermore, PAE suppressed the neutrophil infiltration, permeability increase, pathological changes, cellular damage and death, pro-inflammatory cytokines expression, and oxidative stress upregulation, which was associated with its blockage of the MAPK/Akt/NF-κB pathway in lung tissues of ALI mice. CONCLUSION: PAE may serve as a potential agent for ALI treatment due to its anti-inflammatory and anti-oxidative properties, which correlate to the blockage of the MAPK/NF-κB and AKT signaling pathways.


Asunto(s)
Lesión Pulmonar Aguda , Periplaneta , Ratones , Animales , Lipopolisacáridos/toxicidad , FN-kappa B/metabolismo , Periplaneta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Estrés Oxidativo , Ratones Endogámicos BALB C
15.
Toxins (Basel) ; 15(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37235381

RESUMEN

Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 µM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Células A549 , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/metabolismo , Mitocondrias/metabolismo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Línea Celular Tumoral , Potencial de la Membrana Mitocondrial
16.
Chemosphere ; 328: 138576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019396

RESUMEN

Concurrent effect of nanomaterials (NMs) and warming on plant performance remains largely unexplored. In this study, the effects of nanopesticide CuO and nanofertilizer CeO2 on wheat (Triticum aestivum) under optimal (22 °C) and suboptimal (30 °C) temperatures were evaluated. CuO-NPs exerted a stronger negative effect on plant root systems than CeO2-NPs at tested exposure levels. The toxicity of both NMs could be attributed to altered nutrient uptake, induced membrane damage, and raised disturbance of antioxidative related biological pathways. Warming significantly inhibited root growth, which was mainly linked to the disturbance of energy metabolism relevant biological pathways. The toxicity of NMs was enhanced upon warming, with a stronger inhibition of root growth and Fe and Mn uptake. Increasing temperature increased the accumulation of Ce upon CeO2-NP exposure, while the accumulation of Cu was not affected. The relative contribution of NMs and warming to their combined effects was evaluated by comparing disturbed biological pathways under single and multiple stressors. CuO-NPs was the dominant factor inducing toxic effects, while both CeO2-NPs and warming contributed to the mixed effect. Our study revealed the importance of carefully considering global warming as a factor in risk assessment of agricultural applications of NMs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Triticum/metabolismo , Calentamiento Global , Cobre/metabolismo , Nanopartículas del Metal/toxicidad
17.
Chemosphere ; 331: 138736, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37088215

RESUMEN

Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.


Asunto(s)
Molibdeno , Nanopartículas , Triticum , Carbono , Molibdeno/farmacología , Molibdeno/química , Nucleótidos
18.
Biochem Pharmacol ; 210: 115471, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36893813

RESUMEN

Septic shock caused by Gram-positive bacteria continues to be a major cause of morbidity and mortality in intensive care units globally. Most Temporins are excellent growth inhibitors of gram-positive bacteria and candidates for developing antimicrobial treatments due to their biological action and small molecular weight. In this study, a novel Temporin peptide from the skin of Fejervarya limnocharis frog, named as Temporin-FL, was characterized. Temporin-FL was found to adopt typical α-helical conformation in SDS solution and to exhibit selective antibacterial activity against Gram-positive bacteria through a membrane destruction mechanism. Accordingly, Temporin-FL showed protective effects against Staphylococcus aureus-induced sepsis in mice. Finally, Temporin-FL was demonstrated to exert anti-inflammatory effects by neutralizing the action of LPS/LTA and by inhibiting MAPK pathway activation. Therefore, Temporin-FL represents a novel candidate for moleculartherapy of Gram-positive bacterial sepsis.


Asunto(s)
Antiinfecciosos , Choque Séptico , Animales , Ratones , Lipopolisacáridos/toxicidad , Secuencia de Aminoácidos , Proteínas Anfibias/farmacología , Proteínas Anfibias/uso terapéutico , Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Ranidae/metabolismo , Piel , Bacterias Grampositivas , Choque Séptico/metabolismo , Pruebas de Sensibilidad Microbiana
19.
Front Microbiol ; 14: 1102576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937273

RESUMEN

Antimicrobial peptide is one important component of the first protective barrier of organisms. They not only have potent antimicrobial activity which can protect the body from the invading pathogens, but also participate in the immune regulation of the body. In this study, a Brevinin-1 peptide named by Brevinin-1GHd was identified from Hoplobatrachus rugulosus, and the similarity of mature peptide sequence among Brevinin-1GHd, Brevinin-1HL and Brevinin-1GHa supported the close species relationship between H. rugulosus, Hylarana latouchii and Hylarana guertheri. Moreover, the secondary structure of Brevinin-1GHd was found to possess α-helical characteristics and high thermal stability. In addition, Brevinin-1GHd could bind to LPS with a Kd value of 6.49 ± 5.40 mM and suppress the release of TNF-α, NO, IL-6 and IL-1ß by inactivation of MAPK signaling pathway in RAW 264.7 cells induced by LPS. Furtherly, Brevinin-1GHd had a significant inhibitory effect on acute edema development in the right paw of mice injected by carrageenan. Thus, the significant LPS-neutralizing and anti-inflammatory activities of Brevinin-1GHd were demonstrated in this study, which made it become the first Brevinin-1 family peptide with anti-inflammatory activity reported so far, and the biological activity of Brevinin-1GHd made it promising to be a novel therapeutic drug for infectious inflammation.

20.
Acta Pharm ; 73(1): 145-155, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692462

RESUMEN

Voltage-gated K+ (Kv) channels play a role in the cellular processes of various cancer cells, including lung cancer cells. We previously identified and reported a salivary protein from the Xenopsylla cheopis, FS48, which exhibited inhibitory activity against Kv1.1-1.3 channels when assayed in HEK 293T cells. However, whether FS48 has an inhibitory effect on cancer cells expressing Kv channels is unclear. The present study aims to reveal the effects of FS48 on the Kv channels and the NCI-H460 human lung cancer cells through patch clamp, MTT, wound healing, transwell, gelatinase zymography, qRT-PCR and WB assays. The results demonstrated that FS48 can be effective in suppressing the Kv currents, migration, and invasion of NCI-H460 cells in a dose-dependent manner, despite the failure to inhibit the proliferation. Moreover, the expression of Kv1.1 and Kv1.3 mRNA and protein were found to be significantly reduced. Finally, FS48 decreases the mRNA level of MMP-9 while increasing TIMP-1 mRNA level. The present study highlights for the first time that blood-sucking arthropod saliva-derived protein can inhibit the physiological activities of tumour cells via the Kv channels. Furthermore, FS48 can be taken as a hit compound against the tumour cells expressing Kv channels.


Asunto(s)
Neoplasias , Canales de Potasio con Entrada de Voltaje , Xenopsylla , Animales , Humanos , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Xenopsylla/genética , Xenopsylla/metabolismo , Glándulas Salivales/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA