Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Nat Commun ; 15(1): 8043, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271675

RESUMEN

The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neocórtex , Células-Madre Neurales , Neurogénesis , Factores del Dominio POU , Animales , Femenino , Masculino , Ratones , Proliferación Celular , Hurones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Macaca , Neocórtex/metabolismo , Neocórtex/embriología , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Factores del Dominio POU/metabolismo , Factores del Dominio POU/genética , Receptores Notch/metabolismo , Receptores Notch/genética
2.
Angew Chem Int Ed Engl ; : e202416240, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299929

RESUMEN

The development of photocatalytic systems that enable the simultaneous production of H2O2 and value-added organic chemicals presents a dual advantage: generating valuable products while maximizing the utilization of solar energy. Despite the potential, there are relatively few reports on photocatalysts capable of such dual functions. In this study, we synthesized a series of donor-acceptor covalent organic frameworks (COFs), designated as JUC-675 to JUC-677, to explore their photocatalytic efficiency in the co-production of H2O2 and N-benzylbenzaldimine (BBAD). Among them, JUC-675 exhibited exceptional performance, achieving a H2O2 production rate of 22.8 mmol g-1 h-1 with an apparent quantum yield of 15.7%, and its solar-to-chemical conversion efficiency was calculated to be 1.09%, marking it as the most effective COF-based photocatalyst reported to date. Additionally, JUC-675 demonstrated a high selectivity (99.9%) and yield (96%) for BBAD in the oxidative coupling of benzylamine. The underlying reaction mechanism was thoroughly investigated through validation experiments and density functional theory (DFT) calculations. This work represents a significant advancement in the design of COF-based photocatalysts and the development of efficient dual-function photocatalytic platforms, offering new insights and methodologies for enhanced solar energy utilization and the synthesis of value-added products.

3.
J Pharm Biomed Anal ; 252: 116457, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241676

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a hepatobiliary malignancy which accounts for approximately 5-10 % of primary liver cancers and has a high mortality rate. The diagnosis of iCCA remains significant challenges owing to the lack of specific and sensitive diagnostic tests available. Hence, improved methods are needed to detect iCCA with high accuracy. In this study, we evaluated the efficacy of serum amino acid profiling combined with machine learning modeling for the diagnosis of iCCA. A comprehensive analysis of 28 circulating amino acids was conducted in a total of 140 blood samples from patients with iCCA and normal individuals. We screened out 6 differentially expressed amino acids with the criteria of |Log2(Fold Change, FC)| > 0.585, P-value < 0.05, variable importance in projection (VIP) > 1.0 and area under the curve (AUC) > 0.8, in which amino acids L-Asparagine and Kynurenine showed an increasing tendency as the disease progressed. Five frequently used machine learning algorithms (Logistic Regression, Random Forest, Supporting Vector Machine, Neural Network and Naïve Bayes) for diagnosis of iCCA based on the 6 circulating amino acids were established and validated with high sensitivity and good overall accuracy. The resulting models were further improved by introducing a clinical indicator, gamma-glutamyl transferase (GGT). This study introduces a new approach for identifying potential serum biomarkers for the diagnosis of iCCA with high accuracy.

4.
Mar Biotechnol (NY) ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122812

RESUMEN

Isochrysis galbana is valuable in aquaculture due to its production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, achieving high yields of polyunsaturated fatty acids (PUFAs) presents challenges, leading to exploration of innovative approaches. This study investigated the influence of Bacillus jeotgali on the growth of I. galbana and its fatty acid composition. Co-culturing I. galbana with B. jeotgali significantly increased chlorophyll a content and cell abundance, particularly at higher bacterial population densities (algae-to-bacteria ratio of 1:10). Physiological and biochemical analyses found elevated soluble protein content in microalgae co-cultured with B. jeotgali, accompanied by decreased superoxide dismutase (SOD) activity. Fatty acid composition analysis demonstrated a distinctive profile in co-cultured I. galbana, characterized by increased PUFAs, especially EPA and DHA. Gene expression analysis indicated an upregulation of desaturase genes (d4FAD, d5FAD, d6FAD, and d8FAD) associated with PUFA synthesis pathway in I. galbana during co-culturing with B. jeotgali. This study advances our understanding of bacteria-microalgae interactions and presents a promising strategy for enhancing the production of DHA and EPA.

5.
Angew Chem Int Ed Engl ; : e202412707, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136931

RESUMEN

Photo-driven cross-coupling of o-arylenediamines and alcohols has emerged as an alternative for the synthesis of bio-active benzimidazoles. However, tackling the key problem related to efficient adsorption and activation of both coupling partners over photocatalysts towards activity enhancement remains a challenge. Here, we demonstrate an efficient interface synergy strategy by coupling exposed oxygen vacancies (VO) and Pd Lewis acid sites for benzimidazole and hydrogen (H2) coproduction over Pd-loaded TiO2 nanospheres with the highest photoredox activity compared to previous works so far. The results show that the introduction of VO optimizes the energy band structure and supplies coordinatively unsaturated sites for adsorbing and activating ethanol molecules, affording acetaldehyde active intermediates. Pd acts as a Lewis acid site, enhancing the adsorption of alkaline amine moleculesvia Lewis acid-base pair interactions and driving the condensation process. Furthermore, VO and Pd synergistically promote interfacial charge transfer and separation. This work offers new insightful guidance for the rational design of semiconductor-based photocatalysts with interface synergy at the molecular level towards the high-performance coproduction of renewable fuels and value-added feedstocks.

6.
World J Gastrointest Oncol ; 16(6): 2520-2530, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994151

RESUMEN

BACKGROUND: Colorectal cancer is currently the third most common malignant tumor and the second leading cause of cancer-related death worldwide. Neoadjuvant chemoradiotherapy (nCRT) is standard for locally advanced rectal cancer (LARC). Except for pathological examination after resection, it is not known exactly whether LARC patients have achieved pathological complete response (pCR) before surgery. To date, there are no clear clinical indicators that can predict the efficacy of nCRT and patient outcomes. AIM: To investigate the indicators that can predict pCR and long-term outcomes following nCRT in patients with LARC. METHODS: Clinical data of 128 LARC patients admitted to our hospital between September 2013 and November 2022 were retrospectively analyzed. Patients were categorized into pCR and non-pCR groups. Univariate analysis (using the χ 2 test or Fisher's exact test) and logistic multivariate regression analysis were used to study clinical predictors affecting pCR. The 5-year disease-free survival (DFS) and overall survival (OS) rates were calculated using Kaplan-Meier analysis, and differences in survival curves were assessed with the log-rank test. RESULTS: Univariate analysis showed that pretreatment carcinoembryonic antigen (CEA) level, lymphocyte-monocyte ratio (LMR), time interval between neoadjuvant therapy completion and total mesorectal excision, and tumor size were correlated with pCR. Multivariate results showed that CEA ≤ 5 ng/mL (P = 0.039), LMR > 2.73 (P = 0.023), and time interval > 10 wk (P = 0.039) were independent predictors for pCR. Survival analysis demonstrated that patients in the pCR group had significantly higher 5-year DFS rates (94.7% vs 59.7%, P = 0.002) and 5-year OS rates (95.8% vs 80.1%, P = 0.019) compared to the non-pCR group. Tumor deposits (TDs) were significantly correlated with shorter DFS (P = 0.002) and OS (P < 0.001). CONCLUSION: Pretreatment CEA, LMR, and time interval contribute to predicting nCRT efficacy in LARC patients. Achieving pCR demonstrates longer DFS and OS. TDs correlate with poor prognosis.

7.
Angew Chem Int Ed Engl ; 63(38): e202408527, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958191

RESUMEN

Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2 % at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.

8.
Nat Commun ; 15(1): 4880, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849347

RESUMEN

Assembling graphene sheets into macroscopic fibers with graphitic layers uniaxially aligned along the fiber axis is of both fundamental and technological importance. However, the optimal performance of graphene-based fibers has been far lower than what is expected based on the properties of individual graphene. Here we show that both mechanical properties and electrical conductivity of graphene-based fibers can be significantly improved if bridges are created between graphene edges through covalent conjugating aromatic amide bonds. The improved electrical conductivity is likely due to extended electron conjugation over the aromatic amide bridged graphene sheets. The larger sheets also result in improved π-π stacking, which, along with the robust aromatic amide linkage, provides high mechanical strength. In our experiments, graphene edges were bridged using the established wet-spinning technique in the presence of an aromatic amine linker, which selectively reacts to carboxyl groups at the graphene edge sites. This technique is already industrial and can be easily upscaled. Our methodology thus paves the way to the fabrication of high-performance macroscopic graphene fibers under optimal techno-economic and ecological conditions.

9.
Angew Chem Int Ed Engl ; 63(34): e202407791, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860734

RESUMEN

Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH4) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH4 and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH4 toward multicarbon (C2+) hydrocarbons, particularly ethylene (C2H4). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH4 into C2H4 with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH4 and the resulting C2H6, constituting a truly synergistic catalytic system to facilitate the C2H4 generation. This work offers a novel perspective on the advancement of photocatalytic directional CH4 conversion toward high value-added C2+ hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.

10.
BMC Med Genomics ; 17(1): 137, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778403

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS: RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS: A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS: Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.


Asunto(s)
Adenosina , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pronóstico , Femenino , Biomarcadores de Tumor/genética , Medición de Riesgo , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Microambiente Tumoral
11.
United European Gastroenterol J ; 12(6): 772-779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753528

RESUMEN

OBJECTIVES: Detection of early neoplastic lesions is crucial for improving the survival rates of patients with gastric cancer. Optical enhancement mode 2 is a new image-enhanced endoscopic technique that offers bright images and can improve the visibility of neoplastic lesions. This study aimed to compare the detection of neoplastic lesions with optical enhancement mode 2 and white-light imaging (WLI) in a high-risk population. METHODS: In this prospective multicenter randomized controlled trial, patients were randomly assigned to optical enhancement mode 2 or WLI groups. Detection of suspicious neoplastic lesions during the examinations was recorded, and pathological diagnoses served as the gold standard. RESULTS: A total of 1211 and 1219 individuals were included in the optical enhancement mode 2 and WLI groups, respectively. The detection rate of neoplastic lesions was significantly higher in the optical enhancement mode 2 group (5.1% vs. 1.9%; risk ratio, 2.656 [95% confidence interval, 1.630-4.330]; p < 0.001). The detection rate of neoplastic lesions with an atrophic gastritis background was significantly higher in the optical enhancement mode 2 group (8.6% vs. 2.6%, p < 0.001). The optical enhancement mode 2 group also had a higher detection rate among endoscopists with different experiences. CONCLUSIONS: Optical enhancement mode 2 was more effective than WLI for detecting neoplastic lesions in the stomach, and can serve as a new method for screening early gastric cancer in clinical practice. CLINICAL REGISTRY: United States National Library of Medicine (https://www. CLINICALTRIALS: gov), ID: NCT040720521.


Asunto(s)
Detección Precoz del Cáncer , Gastroscopía , Aumento de la Imagen , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Gastroscopía/métodos , Detección Precoz del Cáncer/métodos , Anciano , Aumento de la Imagen/métodos , Gastritis Atrófica/diagnóstico , Gastritis Atrófica/patología , Gastritis Atrófica/diagnóstico por imagen , Adulto
12.
Redox Biol ; 72: 103140, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38593629

RESUMEN

Gut microbiota has been implicated in the initiation and progression of various diseases; however, the underlying mechanisms remain elusive and effective therapeutic strategies are scarce. In this study, we investigated the role and mechanisms of gut microbiota in TNBS-induced colitis and its associated kidney injury while evaluating the potential of dietary protein as a therapeutic intervention. The intrarectal administration of TNBS induced colitis in mice, concurrently with kidney damage. Interestingly, this effect was absent when TNBS was administered intraperitoneally, indicating a potential role of gut microbiota. Depletion of gut bacteria with antibiotics significantly attenuated the severity of TNBS-induced inflammation, oxidative damage, and tissue injury in the colon and kidneys. Mechanistic investigations using cultured colon epithelial cells and bone-marrow macrophages unveiled that TNBS induced cell oxidation, inflammation and injury, which was amplified by the bacterial component LPS and mitigated by thiol antioxidants. Importantly, in vivo administration of thiol-rich whey protein entirely prevented TNBS-induced colonic and kidney injury. Our findings suggest that gut bacteria significantly contribute to the initiation and progression of colitis and associated kidney injury, potentially through mechanisms involving LPS-induced exaggeration of oxidative cellular damage. Furthermore, our research highlights the potential of dietary thiol antioxidants as preventive and therapeutic interventions.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Estrés Oxidativo , Ácido Trinitrobencenosulfónico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Colitis/inducido químicamente , Colitis/microbiología , Colitis/metabolismo , Ratones , Ácido Trinitrobencenosulfónico/toxicidad , Ácido Trinitrobencenosulfónico/efectos adversos , Modelos Animales de Enfermedad , Masculino , Antioxidantes/farmacología , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos
13.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961182

RESUMEN

The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly. Summary: The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species 1,2 . The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors 2-5 and the emergence of indirect neurogenesis 6 during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological and psychiatric disorders remain largely unknown. Here we show that the transcription factors BRN1 (POU3F3) and BRN2 (POU3F2) act as master regulators of the transcriptional programs in progenitors linked to neuronal specification and neocortex expansion. Using genetically modified lissencephalic and gyrencephalic animals, we found that BRN1/2 establish transcriptional programs in neocortical progenitors that control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in genetically modified mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus establish a mechanistic link between BRN1/2 and genes linked to microcephaly and demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.

14.
ACS Appl Mater Interfaces ; 15(48): 55938-55947, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988589

RESUMEN

Photoelectric devices are extensively applied in optical logic systems, light communication, optical imaging, and so on. However, traditional photoelectric devices can only generate unidirectional photocurrent, which hinders the simplification and multifunctionality of devices. Recently, it has become a new research focus to achieve controllable reversal of the output photocurrent direction (bipolar current) in a photoelectric system. Considering that the device with bipolar current adds a reverse current operating state compared to traditional devices, the former is more suitable for developing new multifunctional photoelectric devices. Due to the existence of electrolytes, photoelectrochemical (PEC) systems contain chemical processes such as ion diffusion and migration and electrochemical reactions, which are unable to occur in solid-state transistor devices, and the effect of electrolyte pH on the performance of PEC systems is usually ignored. We prepared a MnPS3-based PEC-type photodetector and reversed photocurrents by adjusting the pH of electrolytes, i.e., the electrolyte-controlled photoelectrochemical photocurrent switching (PEPS) effect. We clarified the effect of pH values on the direction of photocurrent from the perspectives of electrolyte energy level rearrangement splitting and the kinetic theory of the semiconductor electrode. This work not only contributes to a deeper understanding of carrier transport in PEC processes but also inspires the development of advanced multifunctional photoelectric devices.

15.
Angew Chem Int Ed Engl ; 62(41): e202311731, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37632151

RESUMEN

Solar-driven CO2 reduction integrated with C-C/C-X bond-forming organic synthesis represents a substantially untapped opportunity to simultaneously tackle carbon neutrality and create an atom-/redox-economical chemical synthesis. Herein, we demonstrate the first cooperative photoredox catalysis of efficient and tunable CO2 reduction to syngas, paired with direct alkylation/arylation of unactivated allylic sp3 C-H bonds for accessing allylic C-C products, over SiO2 -supported single Ni atoms-decorated CdS quantum dots (QDs). Our protocol not only bypasses additional oxidant/reductant and pre-functionalization of organic substrates, affording a broad of allylic C-C products with moderate to excellent yields, but also produces syngas with tunable CO/H2 ratios (1 : 2-5 : 1). Such win-win coupling catalysis highlights the high atom-, step- and redox-economy, and good durability, illuminating the tantalizing possibility of a renewable sunlight-driven chemical feedstocks manufacturing industry.

16.
Thorac Cancer ; 14(25): 2579-2590, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548102

RESUMEN

BACKGROUND: Histone methyltransferases are crucial regulators in non-small cell lung cancer (NSCLC) development. This study explored the mechanism of histone methyltransferase SET domain containing 1A (SETD1A)-mediated H3K4me2 methylation in NSCLC cell ferroptosis and provides novel targets for NSCLC treatment. METHODS: Upon downregulation of SETD1A in NSCLC cell lines, cell proliferation potential, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) activities, iron content, and SETD1A, long noncoding RNA HOXC cluster antisense RNA 3 (lncRNA HOXC-AS3), E1A binding protein p300 (EP300), glutathione peroxidase 4 (GPX4) expressions were determined via cell counting kit-8, ELISA, iron assay kits, RT-qPCR, and western blot. Enrichment levels of SETD1A and H3K4me3 in the HOXC-AS3 promotor were measured via chromatin immunoprecipitation, and the binding of HOXC-AS3 and EP300 was analyzed via RNA immunoprecipitation. Rescue experiments were performed to confirm their roles in NSCLC cell ferroptosis. Xenograft tumor models were established to validate the role of SETD1A in vivo. RESULTS: SETD1A, H3K4me3, HOXC-AS3, and EP300 were highly-expressed in NSCLC cells. Silencing SETD1A inhibited NSCLC cell proliferation, increased MDA and iron levels, and decreased SOD, GSH, and GPX4 levels. SETD1A downregulation reduced H3K4me3 level, HOXC-AS3 expression, the binding of HOXC-AS3 to EP300, and EP300 stability. Overexpression of HOXC-AS3 or EP300 reversed the promotion of silencing SETD1A on NSCLC cell ferroptosis. Silencing SETD1A reduced tumor volume and weight and positive rate of ki67 and increased ferroptosis through the HOXC-AS3/EP300 axis. CONCLUSION: SETD1A-mediated H3K4me2 methylation promoted HOXC-AS3 expression, binding of HOXC-AS3 to EP300, and EP300 stability, thereby suppressing NSCLC cell ferroptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , ARN Largo no Codificante/genética , Neoplasias Pulmonares/patología , Metilación , Línea Celular Tumoral , Proliferación Celular/genética , Proteína p300 Asociada a E1A/metabolismo
17.
Chem Soc Rev ; 52(15): 5013-5050, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37431250

RESUMEN

The ubiquity of solid-liquid interfaces in nature and the significant role of their atomic-scale structure in determining interfacial properties have led to intensive research. Particularly in electrocatalysis, however, a molecular-level picture that clearly describes the dynamic interfacial structures and organizations with their correlation to preferred reaction pathways in electrochemical reactions remains poorly understood. In this review, CO2 electroreduction reaction (CO2RR) is spatially and temporally understood as a result of intricate interactions at the interface, in which the interfacial features are highly relevant. We start with the discussion of current understandings and model development associated with the charged electrochemical interface as well as its dynamic landscape. We further highlight the interactive dynamics from the interfacial field, catalyst surface charges and various gradients in electrolyte and interfacial water structures at interfaces under CO2RR working conditions, with emphasis on the interfacial-structure dependence of catalytic reactivity/selectivity. Significantly, a probing energy-dependent "in situ characterization map" for dynamic interfaces based on various complementary in situ/operando techniques is proposed, aiming to present a comprehensive picture of interfacial electrocatalysis and to provide a more unified research framework. Moreover, recent milestones in both experimental and theoretical aspects to establish the correct profile of electrochemical interfaces are stressed. Finally, we present key scientific challenges with related perspectives toward future opportunities for this exciting frontier.

18.
Entropy (Basel) ; 25(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372201

RESUMEN

Unpaired single-image dehazing has become a challenging research hotspot due to its wide application in modern transportation, remote sensing, and intelligent surveillance, among other applications. Recently, CycleGAN-based approaches have been popularly adopted in single-image dehazing as the foundations of unpaired unsupervised training. However, there are still deficiencies with these approaches, such as obvious artificial recovery traces and the distortion of image processing results. This paper proposes a novel enhanced CycleGAN network with an adaptive dark channel prior for unpaired single-image dehazing. First, a Wave-Vit semantic segmentation model is utilized to achieve the adaption of the dark channel prior (DCP) to accurately recover the transmittance and atmospheric light. Then, the scattering coefficient derived from both physical calculations and random sampling means is utilized to optimize the rehazing process. Bridged by the atmospheric scattering model, the dehazing/rehazing cycle branches are successfully combined to form an enhanced CycleGAN framework. Finally, experiments are conducted on reference/no-reference datasets. The proposed model achieved an SSIM of 94.9% and a PSNR of 26.95 on the SOTS-outdoor dataset and obtained an SSIM of 84.71% and a PSNR of 22.72 on the O-HAZE dataset. The proposed model significantly outperforms typical existing algorithms in both objective quantitative evaluation and subjective visual effect.

19.
Mar Biotechnol (NY) ; 25(3): 463-472, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289264

RESUMEN

Isochrysis zhangjiangensis is an important microalgal species used as bait in aquaculture. However, its optimal cultivation temperature is around 25 °C, limiting its use in summer when temperature is higher. To overcome this limitation, we aimed to develop a consortia of I. zhangjiangensis and bacteria that are more resistant to heat stress. Here, six thermotolerance-promoting bacterial strains were isolated from the culture of a heat-tolerant mutant strain of I. zhangjiangensis (IM), and identified as Algoriphagus marincola, Nocardioides sp., Pseudidiomarina sp., Labrenzia alba, Nitratireductor sp., and Staphylococcus haemolyticus. Further, co-culturing I. zhangjiangensis with A. marincola under high temperature conditions increased cell density, chlorophyll a, PSII maximum photochemical efficiency (Fv/Fm), and soluble protein content of microalgae. The presence of A. marincola positively influenced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and total antioxidant capacity (T-AOC) in I. zhangjiangensis cells, while concurrently reducing the levels of reactive oxygen species (ROS). Additionally, gene expression studies confirmed that co-culturing with A. marincola upregulated the expression of antioxidant-related genes (sod and pod) and stress tolerance genes (heat shock protein genes). Our findings indicate that A. marincola effectively helps I. zhangjiangensis withstand high temperature stress, leading to improved yield of microalgae during high temperature conditions. The thermotolerance-promoting bacteria can be exploited as potential inoculants for enhancing the productivity and sustainability of bait microalgae in aquaculture.


Asunto(s)
Haptophyta , Termotolerancia , Antioxidantes/metabolismo , Haptophyta/metabolismo , Clorofila A/metabolismo , Bacterias
20.
Mol Cancer ; 22(1): 91, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264402

RESUMEN

Cancer therapy resistance is the main cause of cancer treatment failure. The mechanism of therapy resistance is a hot topic in epigenetics. As one of the most common RNA modifications, N6-methyladenosine (m6A) is involved in various processes of RNA metabolism, such as stability, splicing, transcription, translation, and degradation. A large number of studies have shown that m6A RNA methylation regulates the proliferation and invasion of cancer cells, but the role of m6A in cancer therapy resistance is unclear. In this review, we summarized the research progress related to the role of m6A in regulating therapy resistance in cancers.


Asunto(s)
Neoplasias , Humanos , Metilación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Empalme del ARN , Epigénesis Genética , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...