Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Sci Rep ; 14(1): 19356, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169075

RESUMEN

This study aims to evaluate the biomechanical performance of the Gamma 3 nail with an anti-rotation screw (GNS) and compare it to two established gold-standard methods for treating unstable femoral neck fractures (UFNFs). Synthetic bone models were prepared with Pauwels' type III osteotomy and an additional posterior wedge. Three different implant configurations were tested: three cannulated crews (3CS) in an inverted triangle configuration, a dynamic hip screw with an anti-rotation screw (DHSS), and GNS. Non-destructive cyclic axial loading was applied at 7° adduction, with 1000 cycles ranging from 100 to 1000 N. Subsequently, a construct failure test was conducted using progressive axial compression, and fracture reduction loss was recorded. The average axial stiffness was 321 ± 52 N/mm for 3CS, 430 ± 71 N/mm for DHSS, and 519 ± 104 N/mm for GNS. The average ultimate failure loads were 2699.3 N for 3CS, 3427.1 N for DHSS, and 3758.9 N for GNS. GNS demonstrated significantly greater axial stiffness compared to the other two groups (P < 0.05). Both DHSS and GNS exhibited similar failure loading, which were greater than those of 3CS (P < 0.05). GNS offers the advantages of a minimally invasive and intramedullary implant with comparable stability to the DHSS system. Moreover, GNS demonstrated superior biomechanical performance compared to 3 CS configuration.


Asunto(s)
Clavos Ortopédicos , Tornillos Óseos , Fracturas del Cuello Femoral , Fracturas del Cuello Femoral/cirugía , Fracturas del Cuello Femoral/fisiopatología , Humanos , Fenómenos Biomecánicos , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación
2.
Artículo en Chino | MEDLINE | ID: mdl-39212067

RESUMEN

Objective To investigate the effects of sakuranetin (SK) on motor functions in the mouse model of spinal cord injury (SCI) and decipher the mechanism.Methods Fifty-four C57BL/6J mice were randomized into sham,SCI,and SK groups.The mice in the sham group underwent only laminectomy at T9,while those in the SCI and SK groups were subjected to spinal cord contusion injury at T9.Behavioral tests were conducted at different time points after surgery to evaluate the motor functions of mice in each group.The pathological changes in the tissue were observed to assess the extent of SCI in each group.The role and mechanism of SK in SCI were predicted by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses.Reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence were employed to evaluate the inflammation and activation of microglia in SCI mice.BV2 cells in vitro were classified into control (Con),lipopolysaccharide (LPS),and LPS+SK groups.The effects of SK intervention on the release of inflammatory cytokines and the activation of BV2 cells were evaluated.Furthermore,the phosphatidylinositol-3-kinase(PI3K)/protein kinase B (AKT) signaling pathway activator insulin-like growth factor-1 (IGF-1) was used to treat the SK-induced BV2 cells in vitro (SK+IGF-1 group),and SK was used to treat the IGF-1-induced BV2 cells in vitro (IGF-1+SK group).Western blotting was conducted for molecular mechanism validation.Results Behavioral tests and histological staining results showed that compared with the SCI group,the SK group exhibited improved motor abilities and reduced area of damage in the spinal cord tissue (all P<0.001).The GO enrichment analysis predicted that SK may be involved in the inflammation following SCI.The KEGG enrichment analysis predicted that SK regulated the PI3K/Akt pathway to exert the neuroprotective effect.The results from in vitro and in vivo experiments showed that SK lowered the levels of tumor necrosis factor-α,interleukin-6,and interleukin-1ß and inhibited the activation of microglia (all P<0.05).The results of Western blotting showed that SK down-regulated the phosphorylation levels of PI3K and Akt (all P<0.001) and inhibited the IGF-1-induced elevation of PI3K and Akt phosphorylation levels (all P<0.001).Conversely,IGF-1 had the opposite effects (P=0.001,P<0.001).The results of reverse transcription real-time fluorescence quantitative PCR,ELISA,and immunofluorescence showed that the SK+IGF-1 group had higher levels of inflammatory cytokines and more activated microglia than the SK group(all P<0.05).Conclusion SK may suppress the activation of the PI3K/Akt pathway to inhibit the inflammation mediated by SCI-induced activation of microglia,ameliorate the pathological damage of the spinal cord tissue,and promote the recovery of motor functions in SCI mice.

3.
ACS Appl Mater Interfaces ; 16(29): 38017-38027, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38991972

RESUMEN

The vacuum flash solution method has gained widespread recognition in the preparation of perovskite thin films, laying the foundation for the industrialization of perovskite solar cells. However, the low volatility of dimethyl sulfoxide and its weak interaction with formamidine-based perovskites significantly hinder the preparation of cell modules and the further improvement of photovoltaic performance. In this study, we describe an efficient and reproducible method for preparing large-scale, highly uniform formamidinium lead triiodide (FAPbI3) perovskite films. This is achieved by accelerating the vacuum flash rate and leveraging the complex synergism. Specifically, we designed a dual pump system to accelerate the depressurization rate of the vacuum system and compared the quality of perovskite film formed at different depressurization rates. Further, to overcome the limitations posed by DMSO, we substituted N-methylpyrrolidone as the ligand solvent, creating a stable intermediate complex phase. After annealing, it can be transformed into a uniform and pinhole-free FAPbI3 film. Due to the superior quality of these films, the large area perovskite solar module achieved a power conversion efficiency of 22.7% with an active area of 21.4 cm2. Additionally, it obtained an official certified efficiency of 22.1% with an aperture area of 22 cm2, and it demonstrated long-term stability.

4.
Environ Health Perspect ; 132(7): 77005, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028628

RESUMEN

BACKGROUND: Evidence suggested that abiotic airborne exposures may be associated with changes in body composition. However, more evidence is needed to identify key pollutants linked to adverse health effects and their underlying biomolecular mechanisms, particularly in sensitive older adults. OBJECTIVES: Our research aimed to systematically assess the relationship between abiotic airborne exposures and changes in body composition among healthy older adults, as well as the potential mediating mechanisms through the serum lipidome. METHODS: From September 2018 to January 2019, we conducted a monthly survey among 76 healthy adults (60-69 years old) in the China Biomarkers of Air Pollutant Exposure (BAPE) study, measuring their personal exposures to 632 abiotic airborne pollutions using MicroPEM and the Fresh Air wristband, 18 body composition indicators from the InBody 770 device, and lipidomics from venous blood samples. We used an exposome-wide association study (ExWAS) and deletion/substitution/addition (DSA) model to unravel complex associations between exposure to contaminant mixtures and body composition, a Bayesian kernel machine regression (BKMR) model to assess the overall effect of key exposures on body composition, and mediation analysis to identify lipid intermediators. RESULTS: The ExWAS and DSA model identified that 2,4,5-T methyl ester (2,4,5-TME), 9,10-Anthracenedione (ATQ), 4b,8-dimethyl-2-isopropylphenanthrene, and 4b,5,6,7,8,8a,9,10-octahydro-(DMIP) were associated with increased body fat mass (BFM), fat mass indicators (FMI), percent body fat (PBF), and visceral fat area (VFA) in healthy older adults [Bonferroni-Hochberg false discovery rate (FDRBH)<0.05]. The BKMR model demonstrated a positive correlation between contaminants (anthracene, ATQ, copaene, di-epi-α-cedrene, and DMIP) with VFA. Mediation analysis revealed that phosphatidylcholine [PC, PC(16:1e/18:1), PC(16:2e/18:0)] and sphingolipid [SM, SM(d18:2/24:1)] mediated a significant portion, ranging from 12.27% to 26.03% (p-value <0.05), of the observed increase in VFA. DISCUSSION: Based on the evidence from multiple model results, ATQ and DMIP were statistically significantly associated with the increased VFA levels of healthy older adults, potentially regulated through lipid intermediators. These findings may have important implications for identifying potentially harmful environmental chemicals and developing targeted strategies for the control and prevention of chronic diseases in the future, particularly as the global population is rapidly aging. https://doi.org/10.1289/EHP13865.


Asunto(s)
Contaminantes Atmosféricos , Composición Corporal , Exposición a Riesgos Ambientales , Exposoma , Lipidómica , Humanos , Anciano , Persona de Mediana Edad , China , Femenino , Contaminantes Atmosféricos/análisis , Masculino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Biomarcadores/sangre , Contaminación del Aire/estadística & datos numéricos
5.
Environ Res ; 258: 119411, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876423

RESUMEN

Epidemiological evidence on the impact of airborne organic pollutants on lung function among the elderly is limited, and their underlying biological mechanisms remain largely unexplored. Herein, a longitudinal panel study was conducted in Jinan, Shandong Province, China, involving 76 healthy older adults monitored over a span of five months repetitively. We systematically evaluated personal exposure to a diverse range of airborne organic pollutants using a wearable passive sampler and their effects on lung function. Participants' pulmonary function indicators were assessed, complemented by comprehensive multi-omics analyses of blood and urine samples. Leveraging the power of interaction analysis, causal inference test (CIT), and integrative pathway analysis (IPA), we explored intricate relationships between specific organic pollutants, biomolecules, and lung function deterioration, elucidating the biological mechanisms underpinning the adverse impacts of these pollutants. We observed that bis (2-chloro-1-methylethyl) ether (BCIE) was significantly associated with negative changes in the forced vital capacity (FVC), with glycerolipids mitigating this adverse effect. Additionally, 31 canonical pathways [e.g., high mobility group box 1 (HMGB1) signaling, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, epithelial mesenchymal transition, and heme and nicotinamide adenine dinucleotide (NAD) biosynthesis] were identified as potential mechanisms. These findings may hold significant implications for developing effective strategies to prevent and mitigate respiratory health risks arising from exposure to such airborne pollutants. However, due to certain limitations of the study, our results should be interpreted with caution.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Masculino , Femenino , China , Estudios Longitudinales , Persona de Mediana Edad , Pulmón/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Pruebas de Función Respiratoria , Capacidad Vital/efectos de los fármacos
6.
Mar Pollut Bull ; 203: 116381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692001

RESUMEN

Due to the widespread use of sliver nanoparticles (AgNPs), a large amount of AgNPs has inevitably been released into the environment, and there is growing concern about the toxicity of AgNPs to nitrogen-functional bacteria. In addition to traditional anaerobic denitrifying bacteria, heterotrophic nitrification-aerobic denitrification (HNAD) bacteria are also important participants in the nitrogen cycle. However, the mechanisms by which AgNPs influence HNAD bacteria have yet to be explicitly demonstrated. In this study, the inhibitory effects of different concentrations of AgNPs on a HNAD bacteria Zobellella sp. B307 were investigated, and the underlying mechanism was explored by analyzing the antioxidant system and the activities of key denitrifying enzymes. Results showed that AgNPs could inhibit the growth and the HNAD ability of Zobellella sp. B307. AgNPs could accumulate on the surface of bacterial cells and significantly destroyed the cell membrane integrity. Further studies demonstrated that the presence of high concentration of AgNPs could result in the overproduction of reactive oxygen species (ROS) and related oxidative stress in the cells. Furthermore, the catalytic activities of key denitrifying enzymes (nitrate reductase (NAR), nitrite reductase (NIR), and nitrous oxide reductase (N2OR)) were significantly suppressed under exposure to a high concentration of AgNPs (20 mg·L-1), which might be responsible for the inhibited nitrogen removal performance of strain B307. This work could improve our understanding of the inhibitory effect and underlying mechanism of AgNPs on HNAD bacteria.


Asunto(s)
Desnitrificación , Nanopartículas del Metal , Nitrificación , Nitrógeno , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Nitrito Reductasas/metabolismo , Procesos Heterotróficos
7.
Front Bioeng Biotechnol ; 12: 1368818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807650

RESUMEN

Objective: We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods: Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results: This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion: Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.

8.
Small Methods ; : e2400428, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741554

RESUMEN

Efficiency reduction in perovskite solar cells (PSCs) during the magnification procedure significantly hampers commercialization. Vacuum-flash (VF) has emerged as a promising method to fabricate PSCs with consistent efficiency across scales. However, the slower solvent removal rate of VF compared to the anti-solvent method leads to perovskite films with buried defects. Thus, this work employs low-toxic Lewis base ligand solvent N-ethyl-2-pyrrolidone (NEP) to improve the nucleation process of perovskite films. NEP, with a mechanism similar to that of N-methyl-2-pyrrolidone in FA-based perovskite formation, enhances the solvent removal speed owing to its lower coordination ability. Based on this strategy, p-i-n PSCs with an optimized interface attain a power conversion efficiency (PCE) of 24.19% on an area of 0.08 cm2. The same nucleation process enables perovskite solar modules (PSMs) to achieve a certified PCE of 23.28% on an aperture area of 22.96 cm2, with a high geometric fill factor of 97%, ensuring nearly identical active area PCE (24%) in PSMs as in PSCs. This strategy highlights the potential of NEP as a ligand solvent choice for the commercialization of PSCs.

9.
ACS Appl Mater Interfaces ; 16(19): 24760-24770, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708525

RESUMEN

Perovskite solar cells (PSCs) have shown great potential for reducing costs and improving power conversion efficiency (PCE). One effective method to achieve the latter is to use an all-inorganic charge transport layer (ICTL). However, traditional methods for crystallizing inorganic layers often result in the formation of a powder instead of a continuous film. To address this issue, we designed a dual-layer inorganic electron transport layer (IETL). This dual-layer structure consists of a layer of SnO2 nanocrystals (SnO2 NCs) deposited via a solution process and a dense SnO2 layer deposited through atomic layer deposition (ALD SnO2) to fill the cracks and gaps between the SnO2 NCs. PSCs having these dual-layer SnO2 ETLs achieved a high efficiency of 23.0%. This efficiency surpasses the recorded performance of ICTLs deposited on the perovskite. Furthermore, the PCE is comparable to that achieved with a C60 ETL. Moreover, the high-density structure of the ALD SnO2 layer inhibits the vertical migration of ions, resulting in improved thermal stability. After continuous heating at 85 °C in 10% humidity for 1000 h, the PCE of the dual-layer SnO2 structure decreased by 18%, whereas that of the C60/BCP structure decreased by 36%. The integration of dual-layer SnO2 into PSCs represents a significant advancement in achieving high-performance, commercially viable inverted monolithic PSCs or tandem solar cells.

10.
Heliyon ; 10(7): e28680, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590901

RESUMEN

Background: Bruck syndrome (BS) is an extremely rare autosomal-recessive connective tissue disorder mainly characterized by bone fragility, congenital joint contracture, and spinal deformity. It is also considered as a rare form of osteogenesis imperfecta (OI) due to features of osteopenia and fragility fractures. Its two forms, BS1 and BS2, are caused by pathogenic variations in FKBP10 and PLOD2, respectively. Objective: We aimed to improve the clinical understanding of BS by presenting a case from China and to identify the genetic variants that led to this case. Methods: OI was suspected in a Chinese boy with a history of recurrent long bone fractures, lumbar kyphosis, and dentinogenesis imperfecta (DI). Whole-exome sequencing (WES) was performed to identify pathogenic variations. Sanger sequencing was used to confirm the results of the WES. In silico analysis was used to predict the pathogenicity of genetic variants. Results: WES and Sanger sequencing revealed a compound heterozygous variation in the FKBP10 gene (NM_021939, c.23dupG in exon 1, and c.825dupC in exon 5). Both variants resulted in a frameshift and premature stop codon. Of these two variants, c.23dupG has not been previously reported. The patient's parents were heterozygous carriers of one variant. In addition, zoledronic acid treatment improved the vertebral deformity and bone mineral density (BMD) significantly in this patient. Conclusions: A novel compound heterozygous variation of FKBP10, c.23dupG/c.825dupC, was identified in a patient with moderately severe OI. Based on these findings, the patient was diagnosed with BS1 without congenital joint contractures or OI type XI. This study expands the spectrum of FKBP10 genetic variants that cause BS and OI.

11.
Front Bioeng Biotechnol ; 12: 1388905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650748

RESUMEN

Objective: To compare the effects of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation and clavicular hook plate fixation on early postoperative pain, postoperative shoulder joint function score and shoulder joint mobility in patients with acromioclavicular joint dislocation. Methods: From January 2020 to January 2023, 43 patients with acromioclavicular joint dislocation admitted to Xi 'an Honghui Hospital were included. Among them, 24 patients were treated with the clavicular hook plate technique (Hook Plate,HP) group, and 19 patients were treated with allogeneic tendon coracoclavicular ligament reconstruction combined with the Kirschner wire technique (Allogeneic Tendon, AT) group. The Constant-Murley score of shoulder joint function 6 months after operation, postoperative shoulder joint activity, preoperative and postoperative pain, operation time, intraoperative blood loss and complications were compared between the two groups. Results: All 43 patients were followed up for an average of 9.7 (9-12) months. The intraoperative blood loss in the allogeneic tendon group was less than in the hook plate group. The Constant-Murley shoulder function score was higher than that in the hook plate group 6 months after the operation. The abduction and lifting activity was greater than that in the hook plate group. The visual analogue scale scores at 3 days and 14 days after operation were lower than those in the hook plate group. The difference was statistically significant (p < 0.001). There was 1 case (5.3%) of exudation around the Kirschner needle track in the allogeneic tendon reconstruction group, and 5 cases (20.8%) of complications in the hook plate group, including 1 case of internal fixation stimulation, 2 cases of acromion impingement syndrome, 1 case of acromioclavicular joint osteoarthritis, and 1 case of shoulder joint stiffness. The complication rate of the allogeneic tendon group was lower than that of the hook plate group. Conclusion: The clinical efficacy of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation in treating acromioclavicular joint dislocation (Rockwood type III-V) is better than hook plate internal fixation. The patients have less early postoperative pain and better recovery of shoulder joint function and shoulder joint mobility.

12.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38556120

RESUMEN

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Asunto(s)
Antioxidantes , Hesperidina , Traumatismos de la Médula Espinal , Ratas , Animales , Caspasa 3/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Apoptosis , Estrés Oxidativo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Médula Espinal
13.
Nat Commun ; 15(1): 1456, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368402

RESUMEN

Capturing fine spatial, spectral, and temporal information of the scene is highly desirable in many applications. However, recording data of such high dimensionality requires significant transmission bandwidth. Current computational imaging methods can partially address this challenge but are still limited in reducing input data throughput. In this paper, we report a video-rate hyperspectral imager based on a single-pixel photodetector which can achieve high-throughput hyperspectral video recording at a low bandwidth. We leverage the insight that 4-dimensional (4D) hyperspectral videos are considerably more compressible than 2D grayscale images. We propose a joint spatial-spectral capturing scheme encoding the scene into highly compressed measurements and obtaining temporal correlation at the same time. Furthermore, we propose a reconstruction method relying on a signal sparsity model in 4D space and a deep learning reconstruction approach greatly accelerating reconstruction. We demonstrate reconstruction of 128 × 128 hyperspectral images with 64 spectral bands at more than 4 frames per second offering a 900× data throughput compared to conventional imaging, which we believe is a first-of-its kind of a single-pixel-based hyperspectral imager.

15.
Clin Interv Aging ; 19: 11-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204959

RESUMEN

Objective: The incidence of hip fracture in the elderly is increasing. Robot navigation technology has the advantages of minimally invasive and accurate. To explore the difference between the clinical effects of proximal femoral anti-rotation intramedullary nail (PFNA) assisted by robot navigation in the treatment of femoral intertrochanteric fracture and traditional PFNA in the treatment of femoral intertrochanteric fracture in the elderly; analyze the advantages and feasibility of PFNA assisted by robot navigation in the treatment of femoral intertrochanteric fracture in the elderly. Patients and Methods: From February 2021 to October 2022, the elderly (>65 years old) with femoral intertrochanteric fracture underwent surgery in our center. Divided the patients included in the study into 2 groups based on the surgical method. The surgical method of robot group was PFNA fixation assisted by robot navigation, while the surgical method of traditional group was classic PFNA fixation, Baseline data (general condition, Evans classification, time from injury to operation, preoperative hemoglobin) and observation indicators (intraoperative bleeding, operation time, the length of incision for mail nail insertion, postoperative hemoglobin drop, blood transfusion rate and the Harris score of hip joint 1 year after operation) of the two groups were collected to compare whether there were differences between the two groups. Results: There was no statistical difference in baseline data between the two groups (P>0.05). The intraoperative bleeding in the robot group was 68.17±10.66 mL, the intraoperative bleeding in the traditional group was 174±8.11mL (P<0.001). The operation time in the robot group was 68.81 ± 6.89 min, in the traditional group, the operation time was 76.94 ± 8.18 min (P<0.001). The length of incision for mail nail insertion in the robot group was 3.53 ± 0.63 cm, the length of the incision for mail nail insertion in the traditional group was 4.23 ± 0.71 cm (P<0.001). 5 patients (13.9%) in the robot group received blood transfusion treatment, and 13 patients (36.1%) in the traditional group received blood transfusion treatment (P=0.029). The hemoglobin in the robot group decreased by 14.81 ± 3.27 g/l after operation compared with that before operation, while that in the traditional group decreased by 16.69 ± 3.32 g/l (P=0.018). The Harris score of the hip joint of the affected limb in the robot group was excellent in 25 cases, good in 8 cases and poor in 3 cases one year after the operation; In the traditional group, Harris scores were excellent in 18 cases, good in 11 cases and poor in 7 cases (P=0.021). Conclusion: PFNA fixation of femoral intertrochanteric fracture with robot navigation assistance has the advantages of minimally invasive and accurate, shorter operation time, less bleeding and lower blood transfusion rate than traditional surgical methods, and has certain advantages in reducing postoperative complications of elderly patients.


Asunto(s)
Fracturas del Fémur , Fracturas de Cadera , Robótica , Anciano , Humanos , Estudios Retrospectivos , Fracturas de Cadera/cirugía , Hemoglobinas
16.
Adv Mater ; 36(18): e2313080, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38242543

RESUMEN

Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability are predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction strategy is proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-acryloylmorpholine) (poly(4-AcM)) network on PbI2 surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 µm and reduced trap density from 1.12 × 1016 to 2.56 × 1015 cm-3. Moreover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite is markedly suppressed. Resultant PSCs gain a robust power conversion efficiency (PCE) of 24.04%. Typically, they maintain 91% of their initial PCE for 13 008 h in a desiccated ambient environment and retain 92% PCE after storage for 4000 h with a relative humidity of 50 ± 10%, which is the state-of-the-art long-term stability among the reported contributions.

17.
Neural Netw ; 170: 622-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056409

RESUMEN

Deep convolutional neural networks (DCNNs) have exhibited excellent feature extraction and detail reconstruction capabilities for single image super-resolution (SISR). Nevertheless, most previous DCNN-based methods do not fully utilize the complementary strengths between feature maps, channels, and pixels. Therefore, it hinders the ability of DCNNs to represent abundant features. To tackle the aforementioned issues, we present a Cascaded Visual Attention Network for SISR called CVANet, which simulates the visual attention mechanism of the human eyes to focus on the reconstruction process of details. Specifically, we first designed a trainable feature attention module (FAM) for feature-level attention learning. Afterward, we introduce a channel attention module (CAM) to reinforce feature maps under channel-level attention learning. Meanwhile, we propose a pixel attention module (PAM) that adaptively selects representative features from the previous layers, which are utilized to generate a high-resolution image. Satisfactory, our CVANet can effectively improve the resolution of images by exploring the feature representation capabilities of different modules and the visual perception properties of the human eyes. Extensive experiments with different methods on four benchmarks demonstrate that our CVANet outperforms the state-of-the-art (SOTA) methods in subjective visual perception, PSNR, and SSIM.The code will be made available https://github.com/WilyZhao8/CVANet.


Asunto(s)
Benchmarking , Percepción Visual , Humanos , Aprendizaje , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
18.
Int Immunopharmacol ; 127: 111367, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160564

RESUMEN

OBJECTIVE: Excess reactive oxygen species (ROS) generated by oxidative stress is a crucial factor affecting neuronal dysfunction after spinal cord injury (SCI). IL-11 has been reported to have antioxidative stress capacity. In the present study, we investigated the protective effect and mechanism of IL-11 against neuronal cell damage caused by oxidative imbalance. METHODS: We established a H2O2-induced oxidative stress injury model in PC12 cells and observed the effects of IL-11 on cellular activity, morphology, oxidase and antioxidant enzymes, and ROS release. Furthermore, the effect of IL-11 on apoptosis of PC12 cells was assessed by flow cytometry, a TUNEL assay and Western blotting. Transcriptome analysis and rescue experiments revealed the mechanism by which IL-11 protects neurons from oxidative stress damage. For the in vivo investigation, an adenovirus-mediated IL-11 overexpression SCI rat model was constructed to validate the beneficial effect of IL-11 against SCI. RESULTS: IL-11 significantly improved the viability and enhanced the antioxidant activity of H2O2-treated PC12 cells while reducing ROS release. In addition, IL-11 reduced H2O2-induced PC12 cell apoptosis. Transcriptome analysis revealed that the JAK/STAT pathway may be related to the antioxidant activity of IL-11. Treatment with a JAK/STAT inhibitor (Stattic) exacerbated the oxidative damage induced by H2O2 and attenuated the protective effects of IL-11. The results of in vivo studies showed that IL-11 prevented neuronal apoptosis due to oxidative imbalance and promoted the restoration of motor function in SCI rats by activating the JAK/STAT signaling pathway. CONCLUSION: IL-11 inhibited oxidative stress-induced neuronal apoptosis at least in part by activating the JAK/STAT signaling pathway and further promoted the recovery of motor function. These findings suggest that IL-11 may be an effective target for the treatment for SCI.


Asunto(s)
Transducción de Señal , Traumatismos de la Médula Espinal , Ratas , Animales , Quinasas Janus/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Interleucina-11/uso terapéutico , Interleucina-11/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción STAT/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Estrés Oxidativo , Neuronas , Apoptosis , Médula Espinal/metabolismo
19.
Eur J Pharmacol ; 965: 176287, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158110

RESUMEN

BACKGROUND AND AIMS: Complanatuside A (ComA) is a flavonoid-rich compound in Astragalus membranaceus that has anti-inflammatory and neuroprotective effects. In this study, we focused on the effect of ComA on spinal cord injury (SCI) in mice and explored its possible mechanisms. METHODS: The SCI model was constructed using C57BL/6J mice, and the effect of ComA on motor function recovery in SCI mice was evaluated through the BMS (Basso Mouse Scale) and footprint test. The histological effects of ComA on SCI mice were evaluated by hematoxylin-eosin (H&E) staining, Luxol-fast blue (LFB) staining, and Nissl staining. In both in vivo and in vitro experiments, we detected the activation of microglia and the release of inflammatory factors through molecular experiments. Immunofluorescence and Western blotting confirmed that ComA can prevent neuronal apoptosis caused by activated microglia through the c-Jun N-terminal kinase (JNK) pathway. RESULTS: Our research results confirm that ComA can improve motor function in mice after SCI. Our in vitro results indicate that ComA can inhibit the activation of BV2 cells and the release of proinflammatory mediators. In addition, ComA can prevent neuronal cell apoptosis caused by activated BV2 cells. Finally, we found that ComA works through the JNK signaling pathway. CONCLUSIONS: ComA can accelerate the restoration of motor function in mice after SCI, possibly by reducing neuronal apoptosis via inhibition of JNK-related signaling pathways, a reduction in microglial activation, and inhibition of inflammatory factor release. Our data indicate that ComA is a promising drug candidate for improving functional recovery in patients with SCI.


Asunto(s)
Flavonoles , Glucósidos , Sistema de Señalización de MAP Quinasas , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Microglía , Recuperación de la Función , Inflamación/metabolismo , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/metabolismo , Apoptosis , Médula Espinal
20.
Plant Sci ; 338: 111925, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981085

RESUMEN

Chloroplasts are the organelles responsible for photosynthesis and regulate normal plant growth. Although translation elongation factors play important roles in chloroplast development, functional studies of chloroplast translation elongation factors in higher plants remain very sparse. Here, we obtained a rice mutant exhibiting seedling-lethal albino phenotype and named it albino and lethal seedling 1 (als1). Consistently, low content of photosynthetic pigments, malformed chloroplasts and defective photosynthesis were observed in als1 mutant leaves. Map-based cloning experiment showed that als1 mutant had a T base insertion in Os02g0595700, causing a frame shift and premature stop codon. ALS1 encoded a GTP-binding protein EF-Tu, which acts as a translation elongation factor in chloroplast protein translation. ALS1 was found to be expressed throughout plant with highest expression level in young leaves. Moreover, ALS1 was located in chloroplast, whereas the truncated als1 could not normally be located in chloroplast. Additionally, the ALS1 mutation significantly influenced the expression of downstream genes, such as genes relevant to chlorophyll biosynthesis, photosynthesis as well as chloroplast development. These results show that ALS1 acts as a key regulator of chloroplast development and plant growth.


Asunto(s)
Cloroplastos , Genes de Plantas , Oryza , Proteínas de Plantas , Plantones , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Genes de Plantas/genética , Genes de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...