RESUMEN
Catheter-associated urinary tract infection (CAUTI) is a prevalent type of hospital-acquired infection, affecting approximately 15% to 25% of patients with urinary catheters. Long-term use of the catheter can lead to colonization of microorganisms and biofilm formation, and may develop into bacterial CAUTI. However, the frequent replacement of catheters in clinical settings can result in tissue damage, inflammation, ulceration, and additional complications, causing discomfort and pain for patients. In light of these challenges, a novel nanodrug-supported hydrogel coating called NP-AM/FK@OMV-P/H has been developed in this study. Through in vitro experiments, it is confirmed that OMV nano-loaded liquid gel coating has an effective reaction against E.coli HAase and releases antibacterial drugs. This coating has also demonstrated strong inhibition of E.coli and has shown the ability to inhibit the formation of bacterial biofilm. These findings highlight the potential of the OMV nanoparticle gel coating in preventing and treating bacterial infections. Notably, NP-AM/FK@OMV-P/H has exhibited greater efficacy against multidrug-resistant E.coli associated with UTIs compared to coatings containing single antimicrobial peptides or antibiotics. Additionally, it has demonstrated good biosecurity. In conclusion, the NP-AM/FK@OMV-P/H coating holds great potential in providing benefits to patients with CAUTI.
RESUMEN
Electrochemical nitrate reduction to ammonia is a promising alternative strategy for producing valuable ammonia. This prospective route, however, is subject to a slow electrocatalytic rate, which resulted from the weak adsorption and activation of intermediate species, and the low density electron cloud of active centers. To address this issue, we developed a novel approach by doping boron into metal hydroxyl oxides to adjust the electronic structure of active centers, and consequently, led a significant improvement in the Faraday efficiency upto approaching 100 %, as well as an impressive ammonia yield upto approximately 23 mg/h mgcat-1 at -0.6 V vs. reversible hydrogen electrode (RHE). Experimental data in mechanism demonstrate that the doped boron play a crucial role in modulating the local electronic environment surrounding the active sites Co. In situ Raman and FTIR spectra provide evidences that boron facilitates the formation of deoxidation and hydrogenation intermediates. Additionally, density functional theory (DFT) calculations support the notion that boron doping enhances the adsorption capability of intermediates, reduces the reaction barrier, and facilitates the desorption of NH3.
RESUMEN
Ventilator-associated pneumonia (VAP) is a common healthcare-acquired infection often arising during artificial ventilation using endotracheal intubation (ETT), which offers a platform for bacterial colonization and biofilm development. In particular, the effects of prolonged COVID-19 on the respiratory system. Herein, we developed an antimicrobial coating (FK-MEM@CMCO-CS) capable of visualizing pH changes based on bacterial infection and releasing meropenem (MEM) and FK13-a1 in a controlled manner. Using a simple dip-coating process with controlled loading, chitosan was cross-linked with sodium carboxymethyl cellulose oxidation (CMCO) and coated onto PVC-based ETT to form a hydrogel coating. Subsequently, the coated segments were immersed in an indicator solution containing bromothymol blue (BTB), MEM, and FK13-a1 to fabricate the FK-MEM@CMCO-CS coating. In vitro studies have shown that MEM and FK13-a1 can be released from coatings in a pH-responsive manner. Moreover, anti-biofilm and antibacterial adhesion results showed that FK-MEM@CMCO-CS coating significantly inhibited biofilm formation and prevented their colonization of the coating surface. In the VAP rat model, the coating inhibited bacterial growth, reduced lung inflammation, and had good biocompatibility. The coating can be applied to the entire ETT and has the potential for industrial production.
Asunto(s)
Antibacterianos , Biopelículas , Hidrogeles , Neumonía Asociada al Ventilador , Animales , Hidrogeles/química , Antibacterianos/farmacología , Antibacterianos/química , Neumonía Asociada al Ventilador/microbiología , Neumonía Asociada al Ventilador/prevención & control , Concentración de Iones de Hidrógeno , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Ratas , Quitosano/química , Quitosano/farmacología , Masculino , Ratas Sprague-Dawley , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/farmacología , Humanos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/químicaRESUMEN
Oral administration, while convenient, but complex often faces challenges due to the complexity of the digestive environment. In this study, we developed a nanoliposome (NLP) encapsulating psoralen (P) and coated it with chitosan (CH) and pectin (PT) to formulate PT/CH-P-NLPs. PT/CH-P-NLPs exhibit good biocompatibility, superior to liposomes loaded with psoralen and free psoralen alone. After oral administration, PT/CH-P-NLPs remain stable in the stomach and small intestine, followed by a burst release of psoralen after reaching the slightly alkaline and gut microbiota-rich colon segment. In the DSS-induced ulcerative colitis of mice, PT/CH-P-NLPs showed significant effects on reducing inflammation, mitigating oxidative stress, protecting the integrity of the colon mucosal barrier, and modulating the gut microbiota. In conclusion, the designed nanoliposomes demonstrated the effective application of psoralen in treating ulcerative colitis.
Asunto(s)
Colitis Ulcerosa , Colon , Sulfato de Dextran , Ficusina , Liposomas , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Animales , Liposomas/química , Ficusina/química , Ficusina/administración & dosificación , Ficusina/farmacología , Ratones , Administración Oral , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Sulfato de Dextran/química , Sulfato de Dextran/administración & dosificación , Nanopartículas/química , Nanopartículas/administración & dosificación , Pectinas/química , Pectinas/administración & dosificación , Pectinas/farmacología , Ratones Endogámicos C57BL , Masculino , Quitosano/química , Quitosano/administración & dosificaciónRESUMEN
Persistent foot odor and itchiness are common symptoms of tinea pedis, significantly disrupting the daily life of those affected. The cuticular barrier at the site of the tinea pedis is thickened, which impedes the effective penetration of antifungal agents. Additionally, fungi can migrate from the skin surface to deeper tissues, posing challenges in the current clinical treatment for tinea pedis. To effectively treat tinea pedis, we developed a platform of bilayer gelatin methacrylate (GelMA) microneedles (MNs) loaded with salicylic acid (SA) and FK13-a1 (SA/FK13-a1@GelMA MNs). SA/FK13-a1@GelMA MNs exhibit pH- and matrix metalloproteinase (MMP)-responsive properties for efficient drug delivery. The MNs are designed to deliver salicylic acid (SA) deep into the stratum corneum, softening the cuticle and creating microchannels. This process enables the antibacterial peptide FK13-a1 to penetrate through the stratum corneum barrier, facilitating intradermal diffusion and exerting antifungal and anti-inflammatory effects. In severe cases of tinea pedis, heightened local pH levels and MMP activity further accelerate drug release. Our research demonstrates that SA/FK13-a1@GelMA MNs are highly effective against Trichophyton mentagrophytes, Trichophyton rubrum, and Candida albicans. They also reduced stratum corneum thickness, fungal burden, and inflammation in a guinea pig model of tinea pedis induced by T. mentagrophytes. Furthermore, it was discovered that SA/FK13-a1@GelMA MNs exhibit excellent biocompatibility. These findings suggest that SA/FK13-a1@GelMA MNs have significant potential for the clinical treatment of tinea pedis as well as other fungal skin disorders.
Asunto(s)
Antifúngicos , Agujas , Tiña del Pie , Tiña del Pie/tratamiento farmacológico , Animales , Concentración de Iones de Hidrógeno , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/administración & dosificación , Metaloproteinasas de la Matriz/metabolismo , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Cobayas , Gelatina/química , Metacrilatos/químicaRESUMEN
BACKGROUND: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) triggered a significant public health challenge. This study explored the prevalence trends and key genetic characteristics of Hv-CRKP in one Shanghai suburbs hospital during 2014-2018. METHODS: During five years, Hv-CRKP strains identified from 2579 CRKP by specific PCR, were subjected to performed short- and long-read sequencing technology; epidemiological characteristics, antimicrobial-resistance genes (ARGs), virulence determinants, detailed plasmid profiles and conjugation efficiency were comprehensively investigated. RESULTS: 155 Hv-CRKP and 31 non-Hv-CRKP strains were sequenced. Hv-CRKP strains exhibited significant resistance to six common antibiotic classes (>92%). ST11 steadily increased and became the most prevalent ST (85.2%), followed by ST15 (8.5%), ST65 (2.6%), ST23 (1.9%), and ST86 (0.6%). ST11-KL64 (65.2%) rapidly increased from 0 in 2014 to 93.9% in 2018. blaKPC-2 was the primary carbapenemase gene (97.4%). Other ARGs switched from aac(3)-IId to aadA2 in aminoglycoside and from sul1 to sul2 in sulfanilamide. The time-dated phylogenetic tree was divided into four independent evolutionary clades. Clade 1 and 3 strains were mostly limited in the ICU, whereas Clade 2 strains were distributed among multiple departments. Compared to ybt14 in ICEKp12 in Clade 1, Clade 3 strains harbored ybt9 in ICEKp3 and blaCTX-M-65. Hv-CRKP infected more wards than non-Hv-CRKP and showed greater transmission capacity. Three plasmids containing crucial carbapenemase genes demonstrated their early transmission across China. CONCLUSION: The Hv-CRKP ST11-KL64 has rapidly replaced ST11-KL47 and emerged as the predominant epidemic subtype in various hospital wards, highlighting the importance of conducting comprehensive early surveillance for Hv-CRKP, especially in respiratory infections.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , China/epidemiología , Antibacterianos/farmacología , Hospitales , Genómica , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Infecciones por Klebsiella/epidemiologíaRESUMEN
Background and purpose: To study the changes of corticocerebral hemodynamics in surgical area and postoperative hyperperfusion syndrome in patients with chronic internal carotid artery occlusion (CICAO) by intraoperative indocyanine green videoangiography (ICGA)-FLOW 800 and CT perfusion after superficial temporal artery (STA)-middle cerebral artery (MCA) bypass surgery. Methods: From October 2019 to January 2021, 77 patients diagnosed with CICAO underwent direct bypass surgery at Huadong hospital (affiliated with Fudan University) were enrolled. Regions of interest (ROIs) at STA, proximal MCA (PMCA), distal MCA (DMCA), cortical blood capillary (CBC), and cortical vein (CV) were identified after anastomosis by ICGV-FLOW 800 including peak fluorescence intensity (PFI), time to peak (TTP), and area under the time curve (AUC) of fluorescence intensity. All patients underwent perfusion-weighted CT before bypass surgery and those patients with HPS were verified by CTP after bypass. Results: 14 patients with HPS were verified by perfusion-weighted CT after bypass. In HPS group, the AUCTTP of DMCA was significantly larger (T = -3.301, p = 0.004) and TTP of CBC was shorter (T = -2.929, p = 0.005) than patients in non-HPS group. The larger AUCTTP of DMCA (OR = 3.024, 95%CI 1.390-6.578, p = 0.0050) was an independent risk factor by further multivariate logistic regression analysis. Conclusion: The hemodynamic changes of cortical vessels during STA-MCA bypass surgery could be recorded accurately by ICGV-FLOW 800. Furthermore, the increased AUCTTP of DMCA and shorter TTP of CBC may be potential risk factors of HPS.
RESUMEN
As a critical technology to mitigate climate change, the large-scale implementation of carbon capture, utilization, and storage (CCUS) depends on both technological advancement and public acceptance, which is significantly influenced by the perceived risks and benefits. Existing studies, however, have yet to reach a consensus regarding the measurement of CCUS in these two aspects. To fill this gap, this paper develops and validates new scales based on four studies. Specifically, Study 1 generates the initial item pool based on a literature review and semi-structured interviews, and then invites experts to examine the content validity of these items; Study 2 identifies the dimensions and assesses the reliability and validity of the measures through an exploratory and confirmatory factor analysis; Study 3 conducts a one-way ANOVA to test known-group validity; and Study 4 employed structural equation modeling to evaluate the nomological validity. The results demonstrate the internal consistency, reliability, and construct validity of the new scales developed to measure CCUS. This study provides a valuable tool for investigating public perceptions of CCUS and can help policymakers develop future publicity strategies.
Asunto(s)
Carbono , Humanos , Psicometría/métodos , Reproducibilidad de los Resultados , Medición de Riesgo , Encuestas y CuestionariosRESUMEN
Background: Single-cell sequencing technology has become an indispensable tool in tumor mechanism and heterogeneity studies. Pancreatic adenocarcinoma (PAAD) lacks early specific symptoms, and comprehensive bioinformatics analysis for PAAD contributes to the developmental mechanisms. Methods: We performed dimensionality reduction analysis on the single-cell sequencing data GSE165399 of PAAD to obtain the specific cell clusters. We then obtained cell cluster-associated gene modules by weighted co-expression network analysis and identified tumorigenesis-associated cell clusters and gene modules in PAAD by trajectory analysis. Tumor-associated genes of PAAD were intersected with cell cluster marker genes and within the signature module to obtain genes associated with PAAD occurrence to construct a prognostic risk assessment tool by the COX model. The performance of the model was assessed by the Kaplan-Meier (K-M) curve and the receiver operating characteristic (ROC) curve. The score of endocrine pathways was assessed by ssGSEA analysis. Results: The PAAD single-cell dataset GSE165399 was filtered and downscaled, and finally, 17 cell subgroups were filtered and 17 cell clusters were labeled. WGCNA analysis revealed that the brown module was most associated with tumorigenesis. Among them, the brown module was significantly associated with C11 and C14 cell clusters. C11 and C14 cell clusters belonged to fibroblast and circulating fetal cells, respectively, and trajectory analysis showed low heterogeneity for fibroblast and extremely high heterogeneity for circulating fetal cells. Next, through differential analysis, we found that genes within the C11 cluster were highly associated with tumorigenesis. Finally, we constructed the RiskScore system, and K-M curves and ROC curves revealed that RiskScore possessed objective clinical prognostic potential and demonstrated consistent robustness in multiple datasets. The low-risk group presented a higher endocrine metabolism and lower immune infiltrate state. Conclusion: We identified prognostic models consisting of APOL1, BHLHE40, CLMP, GNG12, LOX, LY6E, MYL12B, RND3, SOX4, and RiskScore showed promising clinical value. RiskScore possibly carries a credible clinical prognostic potential for PAAD.
Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , Aprendizaje Automático , Carcinogénesis , Transformación Celular Neoplásica , Fibroblastos , Factores de Transcripción SOXC , Apolipoproteína L1 , Neoplasias PancreáticasRESUMEN
The application of electrochemical hydrodechlorination has been impeded due to the low utilization and activity of Pd catalyst. Herein, a series of Pd catalysts were prepared via the controllable evolution of Zn state during the pyrolysis of ZIF-8 nanosheet. Various forms of Pd with different chemical surroundings were generated upon the combined use of galvanic displacement and ion exchange process. Electrocatalytic hydrodechlorination of 4-chlorophenol was performed and the electrocatalytic hydrodechlorination efficiency of Pd/CN reaches 100% within 3 h at extra low Pd concentration. The coexistence of zero-valent Pd (Pd0) and nitrogen coordinated Pd (Pd-N) was verified by XAFS which provide multiple active sites for focusing on adsorbing H* and cracking C-Cl respectively. The synergetic effect between different chemical state of Pd for efficient hydrodechlorination of chloroaromatics and scheme for dexterous preparation of Pd based electrocatalyst are proposed and discussed.
RESUMEN
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor, with a growing incidence and death rate worldwide. The aims and challenges of treating HCC include targeting the tumor, entering the tumor tissue, inhibiting the spread and growth of tumor cells. M27-39 is a small peptide isolated from the antimicrobial peptide Musca domestica cecropin (MDC), whereas HTPP is a liver-targeting, cell-penetrating peptide obtained from the circumsporozoite protein (CSP) of Plasmodium parasites. In this study, M27-39 was modified by HTPP to form M(27-39)-HTPP, which targeted tumor penetration to treat HCC. Here, we revealed that M(27-39)-HTPP had a good ability to target and penetrate the tumor, effectively limit the proliferation, migration, and invasion, and induce the apoptosis in HCC. Notably, M(27-39)-HTPP demonstrated good biosecurity when administered at therapeutic doses. Accordingly, M(27-39)-HTPP could be used as a new, safe, and efficient therapeutic peptide for HCC.
RESUMEN
Lysosomes, a central regulator of autophagy, play a critical role in tumour growth. Lysosomal protease cathepsin D can initiate apoptosis when released from lysosomes into the cytosol. In this study, we observed that Musca domestica cecropin (Mdc) 1-8 (M1-8), a small anti-tumour peptide derived from Mdc, inhibits hepatoma cell growth by blocking autophagy-lysosome fusion. This effect is likely achieved by targeting lysosomes to activate lysosomal protease D. Additionally, we examined whether lysosomal content and cathepsin D release were involved in M1-8-induced apoptosis. After exposure to M1-8, human hepatoma HepG2 cells rapidly co-localized with lysosomes, disrupted lysosomal integrity, caused leakage of lysosomal protease cathepsin D, caspase activation and mitochondrial membrane potential changes; and promoted cell apoptosis. Interestingly, in M1-8-treated HepG2 cells, autophagic protein content increased and the lysosome-autophagosome fusion was inhibited, suggesting that M1-8 can cause apoptosis through autophagy and lysosomes. This result indicates that a small accumulation of autophagy and autolysosome inhibition in cells can cause cell death. Taken together, these data suggest a novel insight into the regulatory mechanisms of M1-8 in autophagy and lysosomes, which may facilitate the development of M1-8 as a potential cancer therapeutic agent.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Catepsina D/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Péptidos Antimicrobianos , Apoptosis , Autofagia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismoRESUMEN
BACKGROUND: To investigate the influence of continuous positive airway pressure (CPAP) on lipid profiles of the patients with obstructive sleep apnea (OSA) in this meta-analysis. METHODS: Relevant studies reporting the correlation between CPAP and lipid profiles of OSA patients were searched in Pubmed, Cochrane Library and Embase before January 1, 2021. Data of eligible studies were extracted and analyzed using the fixed-effect or random-effect model. Standard mean difference (SMD) and 95% confidence interval (95% CI) were calculated to assess such influence. Subgroup analysis based on CPAP duration was further performed. STATA 12.0 was used in this meta-analysis. RESULTS: A total of 12 independent randomized controlled studies involved 1129 OSA patients were recruited in this meta-analysis. The analyzed lipid profiles included total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high density lipoprotein (HDL). CPAP was not correlated to TC (SMDâ =â -0.07, 95% CIâ =â -0.33 to 0.19), TG (SMDâ =â -0.01, 95% CIâ =â -0.19 to 0.17), LDL (SMDâ =â -0.01, 95% CIâ =â -0.23 to 0.21) and HDL (SMDâ =â 0.10, 95% CIâ =â -0.03 to 0.22) in OSA patients. Moreover, CPAP duration (=12 weeks; >12 weeks; <12 weeks) also did not influence lipid profiles of OSA patients as well. CONCLUSIONS: Regardless of the treatment in CPAP duration, it doses does not influence lipid profiles of OSA patients, including TC, TG, LDL and HDL. The results are inconsistent with previous findings, which should be further validated in the multi-center, long-term randomized controlled trials.
Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño , Humanos , Presión de las Vías Aéreas Positiva Contínua/métodos , Apnea Obstructiva del Sueño/terapia , Triglicéridos , Lipoproteínas HDL , Colesterol , Lipoproteínas LDLRESUMEN
Oral colon-targeted drug delivery systems (OCDDs) are designed to deliver the therapeutic agents to colonic disease sites to improve the effectiveness of drug treatment, increase bioavailability, and reduce systemic side effects and are beneficial for the treatment of colorectal cancer (CRC) and inflammatory bowel disease (IBD). However, concerns about the biosafety of OCDDs are increasing, and changes in the physiological environment of the gastrointestinal tract can affect the therapeutic efficacy of the drug. Herein, we report about an orally administered colon-accumulating mitochondria-targeted drug delivery nanoplatform (M27-39@FA-MCNs), which was synthesized using the small peptide, M27-39, and folic acid (FA)-modified mesoporous carbon nanoparticles (FA-MCNs). The phenolic resin polymerized with phloroglucinol and formaldehyde (PF) was used for fabricating MCNs using a one-step soft-template method. Folic acid (FA) can be covalently combined with chitosan-modified MCNs to obtain FA-MCNs. The M27-39@FA-MCNs were stable with a spherical morphology and an average diameter of 129 nm. The cumulative release rate of M27-39@FA-MCNs in the artificial gastric fluid (pH = 1.2) and intestinal fluid (pH = 6.8) for 6 h was 87.77%. This nanoplatform maintains the advantages of both FA and MCNs to improve the bioactivity of M27-39 with high drug accumulation in colorectal tumor tissues and the ease of excretion, thus ameliorating its biosafety and targetability. Furthermore, M27-39@FA-MCNs induced tumor-cell apoptosis and inhibited tumor growth by disrupting mitochondrial energy metabolism and regulating the mitochondrial apoptosis signaling pathway and immune inflammatory response. Thus, such a mitochondria-targeting FA-modified nanoplatform based on mesoporous carbon and a bioactive peptide may provide a precise strategy for CRC treatment. STATEMENT OF SIGNIFICANCE: In this study, we constructed an orally administered colon-accumulating mitochondria-targeted drug delivery nanoplatform (M27-39@FA-MCNs), which was synthesized using the small peptide (M27-39) and folic acid-modified mesoporous carbon nanoparticles (FA-MCNs). M27-39@FA-MCNs increased the targeting ability of M27-39 toward mitochondria and colon based on the properties of FA-MCNs; they also increased M27-39 accumulation and residence time in colon tumors. Oral administration of M27-39@FA-MCNs remarkably alleviated colorectal cancer (CRC) by targeting tumor cell mitochondria and interfering with the mitochondrial energy metabolism process, and inducing apoptosis related P53/Caspase-3 mitochondrial pathway activation. Therefore, M27-39@FA-MCNs may provide a safe and precise therapeutic strategy for CRC.
Asunto(s)
Quitosano , Neoplasias Colorrectales , Nanopartículas , Carbono/química , Carbono/farmacología , Caspasa 3 , Línea Celular Tumoral , Quitosano/química , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Ácido Fólico/química , Formaldehído , Humanos , Mitocondrias , Nanopartículas/química , Péptidos/farmacología , Floroglucinol , Proteína p53 Supresora de TumorRESUMEN
Multiple drug-resistant (MDR) Shigella isolates have been reported worldwide. Between May 2017 and September 2018, 55 Shigella flexneri 2a isolates were collected from 3322 stool samples of 0-10-year-old outpatients with diarrhea at the Children's Hospital of Urumqi, China. All isolates were characterized using serotyping, antimicrobial susceptibility testing, and whole-genome sequencing. A total of 54 of 55 (98.2%) isolates exhibited MDR phenotypes and had accumulated multiple resistance determinants, particularly of fluoroquinolones and cephalosporins preferred for shigellosis treatment: point mutations in quinolone resistance-determining regions (QRDRs) of topoisomerases (GyrA (S83L, D87N) and ParC (S80I) [n = 9]; GyrA (S83L) and ParC (S80I) [n = 45]) and acquisition of qnrS1 (n = 3) and blaCTX-M (n = 8). Over 70% of isolates acquired two point mutations of GyrA (S83L) and ParC (S80I) in QRDRs and 11 highly resistant isolates accumulated three point mutations in QRDRs or acquired qnrS1. Four S. flexneri 2a isolates from three single-nucleotide polymorphism clusters exhibited coresistance to ciprofloxacin, cefotaxime, or azithromycin (AZM), which are used as first- and second-line shigellosis treatment antimicrobials in clinics. Our data indicated that fluoroquinolones should be terminated in shigellosis treatment for outpatients in Urumqi. The transferable antimicrobial resistance determinants have been identified for third-generation cephalosporins and AZM. Novel strategies are urgently required for developing empirical medication to reduce the antimicrobial selective pressure and prevent dissemination of MDR S. flexneri 2a isolates.
Asunto(s)
Antiinfecciosos , Disentería Bacilar , Quinolonas , Shigella , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Cefalosporinas/farmacología , Cefalosporinas/uso terapéutico , China/epidemiología , Farmacorresistencia Bacteriana/genética , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Fluoroquinolonas/farmacología , Fluoroquinolonas/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Pacientes Ambulatorios , Quinolonas/farmacología , Shigella/genética , Shigella flexneri/genéticaRESUMEN
Leptospira interrogans serogroup Icterohaemorrhagiae is the predominant pathogen causing leptospirosis in China and is still used as the vaccine strain for the current human inactivated vaccine. Unlike the clade ST17, which is distributed worldwide, ST1 is the most prevalent in serogroup Icterohaemorrhagiae in China. To further characterize leptospiral pathogens, isobaric tags for relative and absolute quantitation and parallel reaction monitoring were used to analyze differences at the proteomic level between serogroup Icterohaemorrhagiae vaccine strain 56001 (ST1) and circulating isolate 200502 (ST17) from different periods. Two hundred and eighty-one proteins were differentially expressed between the circulating isolate and vaccine strain, of which 166 were upregulated (> 1.2-fold change, P < 0.05) and 115 (< 0.8-fold change, P < 0.05) were downregulated. Function prediction revealed that nine upregulated proteins were outer membrane proteins, including several known immunogenic and/or virulence-related proteins, such as ompL1, LipL71, and LipL41. Furthermore, important expression differences in carbohydrate, amino acid, and energy metabolism and transport proteins were identified between both strains from different clusters, suggesting that these differences may reflect metabolic diversity and the potential of the pathogens to adapt to different environments. In summary, our findings provide insights into a better understanding of the component strains of the Chinese human leptospirosis vaccine at the proteomic level. Additionally, these data facilitate evaluating the mechanisms by which pathogenic Leptospira species adapt to the host environment.
Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , China/epidemiología , Humanos , Leptospira interrogans/genética , Leptospirosis/epidemiología , Proteómica , SerogrupoRESUMEN
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-||(4,5-dimethylthiazol-2-yl)-2,|5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.
Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Antioxidantes/farmacología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/prevención & control , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Sulfato de Dextran/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , SpirulinaRESUMEN
BACKGROUND: Disease situations are more aggressive in patients with childhood-onset systemic lupus erythematosus (cSLE) than in those with adult-onset SLE (aSLE). However, information on pregnant women with cSLE and its association with pregnancy outcomes is limited. This study aimed to compare pregnancies in patients with cSLE vs. aSLE, and further analyse the characteristics of cSLE in pregnant women and explore its association with adverse pregnancy outcomes. METHODS: Altogether, data of 167 pregnancies from 150 women, including 22 pregnancies with cSLE and 145 pregnancies with aSLE, were retrospectively analysed. Characteristics and disease activity were compared between the cSLE and aSLE groups during pregnancy. Associations between cSLE and the risk of active SLE (SLEPDAI > 4), active lupus nephritis (LN), and adverse pregnancy outcomes were analysed using logistic regression. RESULTS: The cSLE group had a higher incidence of active SLE (12/22 vs. 30/145, P = 0.001) and active LN (11/22 vs. 26/145, P = 0.001) than the aSLE group. In the multivariable analysis, cSLE was a risk factor for active SLE and active LN during pregnancy, with ORs of 4.742 (95%CI 1.678-13.405, P = 0.003) and 4.652 (95%CI 1.630-13.279, P = 0.004), respectively. No significant association between cSLE and the risk of composite adverse gestational outcomes was identified after sequentially adjusting pre-pregnancy characteristics and pregnancy factors (P > 0.05). CONCLUSION: Disease activity of women with cSLE in pregnancy was more aggressive than that of women with aSLE, which was similar to the characteristics of non-pregnant women with SLE. cSLE might have indirect effects on the risk of adverse pregnancy outcomes through LN and active disease. Therefore, closely monitoring patients with cSLE during pregnancy is crucial.