Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35362, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170309

RESUMEN

Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.

2.
Proc Natl Acad Sci U S A ; 120(41): e2306145120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792509

RESUMEN

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus. To explore their roles in endogenous peptide-mediated GIPR signaling, we determined the cryoelectron microscopy (cryo-EM) structures of the two N terminus-altered SVs (referred as GIPR-202 and GIPR-209 in the Ensembl database, SV1 and SV2 here, respectively) and investigated the outcome of coexpressing each of them in question with GIPR in HEK293T cells with respect to ligand binding, receptor expression, cAMP (adenosine 3,5-cyclic monophosphate) accumulation, ß-arrestin recruitment, and cell surface localization. It was found that while both N terminus-altered SVs of GIPR neither bound to the hormone nor elicited signal transduction per se, they suppressed ligand binding and cAMP accumulation of GIPR. Meanwhile, SV1 reduced GIPR-mediated ß-arrestin 2 responses. The cryo-EM structures of SV1 and SV2 showed that they reorganized the extracellular halves of transmembrane helices 1, 6, and 7 and extracellular loops 2 and 3 to adopt a ligand-binding pocket-occupied conformation, thereby losing binding ability to the peptide. The results suggest a form of signal bias that is constitutive and ligand-independent, thus expanding our knowledge of biased signaling beyond pharmacological manipulation (i.e., ligand specific) as well as constitutive and ligand-independent (e.g., SV1 of the growth hormone-releasing hormone receptor).


Asunto(s)
Polipéptido Inhibidor Gástrico , Receptores de la Hormona Gastrointestinal , Humanos , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Ligandos , Microscopía por Crioelectrón , Células HEK293 , Transducción de Señal/fisiología , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Péptidos , Receptor del Péptido 1 Similar al Glucagón/metabolismo
3.
Heliyon ; 9(9): e19219, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662721

RESUMEN

Circular RNAs (circRNAs) are important non-coding RNAs (ncRNAs) involved in the development of multiple human diseases, especially cancers. circRNA_0084043 is significantly involved in the progression of melanoma. However, whether circRNA_0084043 is associated with glioma remains unknown. In this study, the upregulation of circRNA_0084043 in glioma and the association between circRNA_0084043 and glioma grade were identified. Our results showed that circRNA_0084043 is significantly involved in the proliferative, migratory, and invasive capacities of glioma cells. The results obtained from starBase, luciferase reporter assays, RNA immunoprecipitation assays, and RNA pull-down assays demonstrated that circRNA_0084043 acts as a direct sponge for miR-577. TargetScan algorithm was used to identify potential miR-577 targets, it was found that sorting nexin 5 (SNX5) is a candidate bound to miR-577. Finally, cell experiments testified that circRNA_0084043 enhanced growth, migration and invasion of glioma through the regulation of miR-577-mediated SNX5. Taken together, we concluded that circRNA_0084043 in the miR-577/SNX5 axis can be used as a candidate target for glioma therapy.

4.
Cell Discov ; 9(1): 81, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524700

RESUMEN

Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.

5.
Proc Natl Acad Sci U S A ; 119(46): e2215621119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343266

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that perform multiple and important cellular functions. The protein investigated here belongs to class IA of the PI3Ks; it is a dimer consisting of a catalytic subunit, p110α, and a regulatory subunit, p85α, and is referred to as PI3Kα. The catalytic subunit p110α is frequently mutated in cancer. The mutations induce a gain of function and constitute a driving force in cancer development. About 80% of these mutations lead to single-amino-acid substitutions in one of three sites of p110α: two in the helical domain of the protein (E542K and E545K) and one at the C-terminus of the kinase domain (H1047R). Here, we report the cryo-electron microscopy structures of these mutants in complex with the p110α-specific inhibitor BYL-719. The H1047R mutant rotates its sidechain to a new position and weakens the kα11 activation loop interaction, thereby reducing the inhibitory effect of p85α on p110α. E542K and E545K completely abolish the tight interaction between the helical domain of p110α and the N-terminal SH2 domain of p85α and lead to the disruption of all p85α binding and a dramatic increase in flexibility of the adaptor-binding domain (ABD) in p110α. Yet, the dimerization of PI3Kα is preserved through the ABD-p85α interaction. The local and global structural features induced by these mutations provide molecular insights into the activation of PI3Kα, deepen our understanding of the oncogenic mechanism of this important signaling molecule, and may facilitate the development of mutant-specific inhibitors.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Microscopía por Crioelectrón , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Dominio Catalítico/genética , Neoplasias/genética
6.
Proc Natl Acad Sci U S A ; 119(38): e2210769119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095215

RESUMEN

Nanobodies and chemical cross-linking were used to gain information on the identity and positions of flexible domains of PI3Kα. The application of chemical cross-linking mass spectrometry (CXMS) facilitated the identification of the p85 domains BH, cSH2, and SH3 as well as their docking positions on the PI3Kα catalytic core. Binding of individual nanobodies to PI3Kα induced activation or inhibition of enzyme activity and caused conformational changes that could be correlated with enzyme function. Binding of nanobody Nb3-126 to the BH domain of p85α substantially improved resolution for parts of the PI3Kα complex, and binding of nanobody Nb3-159 induced a conformation of PI3Kα that is distinct from known PI3Kα structures. The analysis of CXMS data also provided mechanistic insights into the molecular underpinning of the flexibility of PI3Kα.


Asunto(s)
Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ia , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase Ia/química , Humanos , Espectrometría de Masas/métodos , Anticuerpos de Dominio Único
7.
Skin Res Technol ; 28(5): 708-713, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35644027

RESUMEN

BACKGROUND: The neural basis of rosacea is not well understood. This study aimed to determine whether cerebral glucose metabolism (CGM) changes on 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET)/computed tomography (CT) scans can detect functional network changes in specific brain areas in patients with rosacea. MATERIALS AND METHODS: Eight adults with rosacea and 10 age/sex-matched healthy adults (controls) were enrolled in the study. 18 F-FDG PET/CT brain images for all eight patients and whole-body images for two of the patients were analyzed qualitatively and semi-quantitatively. Differences between the study groups were examined using Fischer's exact test and a Student's t-test. A voxel-based analysis using statistical parametric mapping was performed to compare the brain metabolism of the patients with that of the controls. RESULTS: Compared with the controls, the patients with rosacea showed extensive changes in the CGM signals in the cerebral cortex and limbic system, with less CGM shown in the right superior parietal lobule, right postcentral gyrus, right parahippocampal gyrus, left superior frontal gyrus, and lateral posterior thalamic nucleus and more CGM in the right precentral gyrus, left inferior frontal gyrus, and cerebellar tonsil. No dysmetabolic lesions were found in the whole-body 18 F-FDG PET/CT images. CONCLUSION: Specific neural functional changes occur in patients with rosacea that may explain its pathogenesis.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Rosácea , Adulto , Estudios Transversales , Fluorodesoxiglucosa F18 , Glucosa , Humanos , Rosácea/diagnóstico por imagen
8.
Nat Commun ; 13(1): 2272, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477937

RESUMEN

Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Péptido Intestinal Vasoactivo , Microscopía por Crioelectrón , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
9.
Acta Pharmacol Sin ; 43(5): 1156-1166, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34934197

RESUMEN

Nonalcoholic steatohepatitis (NASH), as a severe form of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. The pathogenesis of NASH is complex and multifactorial, obesity and type 2 diabetes mellitus (T2DM) have been implicated as major risk factors. Glucagon-like peptide-1 receptor (GLP-1R) is one of the most successful drug targets of T2DM and obesity, and its peptidic ligands have been proposed as potential therapeutic agents for NASH. In this article we provide an overview of the pathophysiology and management of NASH, with a special focus on the pharmacological effects and possible mechanisms of GLP-1 mimetics in treating NAFLD/NASH, including dual and triple agonists at GLP-1R, glucose-dependent insulinotropic polypeptide receptor or glucagon receptor.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725156

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases essential for growth and metabolism. Their aberrant activation is associated with many types of cancers. Here we used single-particle cryoelectron microscopy (cryo-EM) to determine three distinct conformations of full-length PI3Kα (p110α-p85α): the unliganded heterodimer PI3Kα, PI3Kα bound to the p110α-specific inhibitor BYL-719, and PI3Kα exposed to an activating phosphopeptide. The cryo-EM structures of unbound and of BYL-719-bound PI3Kα are in general accord with published crystal structures. Local deviations are presented and discussed. BYL-719 stabilizes the structure of PI3Kα, but three regions of low-resolution extra density remain and are provisionally assigned to the cSH2, BH, and SH3 domains of p85. One of the extra density regions is in contact with the kinase domain blocking access to the catalytic site. This conformational change indicates that the effects of BYL-719 on PI3Kα activity extend beyond competition with adenosine triphosphate (ATP). In unliganded PI3Kα, the DFG motif occurs in the "in" and "out" positions. In BYL-719-bound PI3Kα, only the DFG-in position, corresponding to the active conformation of the kinase, was observed. The phosphopeptide-bound structure of PI3Kα is composed of a stable core resolved at 3.8 Å. It contains all p110α domains except the adaptor-binding domain (ABD). The p85α domains, linked to the core through the ABD, are no longer resolved, implying that the phosphopeptide activates PI3Kα by fully releasing the niSH2 domain from binding to p110α. The structures presented here show the basal form of the full-length PI3Kα dimer and document conformational changes related to the activated and inhibited states.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/química , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Tiazoles/química , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/ultraestructura , Microscopía por Crioelectrón , Conformación Proteica , Células Sf9 , Spodoptera
11.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34002801

RESUMEN

Glucagon plays an important role in glucose homeostasis and amino acid metabolism. It regulates plasma amino acid levels which in turn modulate glucagon secretion from the pancreatic α-cell, thereby establishing a liver-α-cell axis described recently. We reported previously that the knock-in mice bearing homozygous V369M substitution (equivalent to a naturally occurring mutation V368M in the human glucagon receptor, GCGR) led to hypoglycemia with improved glucose tolerance. They also exhibited hyperglucagonemia, pancreas enlargement and α-cell hyperplasia. Here, we investigated the effect of V369M/V368M mutation on glucagon-mediated amino acid metabolism. It was found that GcgrV369M+/+ mice displayed increased plasma amino acid levels in general, but significant accumulation of the ketogenic/glucogenic amino acids was observed in animals fed with a high-fat diet (HFD), resulting in deleterious metabolic consequence characteristic of α-cell proliferation and hyperglucagonemia.


Asunto(s)
Aminoácidos/sangre , Células Secretoras de Glucagón/metabolismo , Glucagón/sangre , Hígado/metabolismo , Mutación , Receptores de Glucagón/genética , Animales , Proliferación Celular , Técnicas de Sustitución del Gen , Genotipo , Células Secretoras de Glucagón/patología , Homocigoto , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Receptores de Glucagón/metabolismo
12.
J Cancer ; 12(11): 3249-3256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33976734

RESUMEN

Glioma is a pervasive malignancy and the main cause of cancer-related deaths worldwide. Circular RNA is an important subject of cancer research, and its role and function in glioma are poorly understood. This study demonstrated that hsa_circ_0091581 is upregulated in glioma tissues and cells. The results of the CCK-8, EdU, and transwell assays indicated that hsa_circ_0091581 promotes proliferation, migration, and invasion of glioma cells. The results of the luciferase reporter and RNA immunoprecipitation assays indicated that the mechanism of the effects of hsa_circ_0091581 on glioma cells involves sponging miR-1243-5p to regulate RMI1. The results of the rescue experiments indicated that hsa_circ_0091581 regulates proliferation, migration, and invasion of glioma cells by targeting RMI1 in a miR-1243-5p dependent manner. The results of the nude mice xenograft assays showed that knockdown of hsa_circ_0091581 inhibits glioma growth in vivo. Thus, our study determined the role of hsa_circ_0091581/miR-1243-5p/RMI1 in glioma and suggests that this axis may be a novel therapeutic target in glioma.

13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 30(2): 145-150, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29402364

RESUMEN

OBJECTIVE: To investigate the role of microRNA-1 (miR-1) in cardiac fibroblasts induced by high glucose in rats. METHODS: The primary fibroblasts were cultured from the apical tissue of 1-3 day-old Sprague-Dawley (SD) rats. The cells which were passaged to generation 3 or 4, were randomly divided into normal glucose+lentivector-vehicle group (CON+Lv-Vehicle group), normal glucose+lentivector-miR-1 group (CON+Lv-miR1 group), high glucose+lentivector-vehicle group (HG+Lv-Vehicle group), high glucose+lentivector-miR-1 group (HG+Lv-miR1 group), high glucose+Lv-Vehicle+inhibitor group (HG+Lv-Vehicle+CC group), and high glucose+lentivector-miR-1+inhibitor group (HG+Lv-miR1+CC group). The myocardial fibroblasts were cultured in the concentration of 5.5 mmol/L glucose (normal glucose) or 25.0 mmol/L (high glucose) DMEM medium. Then lentiviral vector containing miR-1 silent sequence or the same volume of lentiviral vector was inoculated into the cells. The AMP activated protein kinase (AMPK) inhibitor Compound C (20 µmol/L) was added to the medium at 12 hours before sampling in inhibitor groups. The expression of phosphorylation of AMPK (p-AMPK), collagenIandIII, matrix metalloproteinase (MMP-2, MMP-9), and autophagy flux related protein LC3B-II and p62/SQSTM1 were measured by Western Blot. RESULTS: The purity of rat myocardial fibroblasts in vitro was 97%. Compared with CON+Lv-Vehicle group, there was no significant difference in the expression of p-AMPK in CON+Lv-miR1 group, the expression of p-AMPK in HG+Lv-Vehicle group was significantly decreased (p-AMPK/t-AMPK: 44.72±3.29 vs. 100.00±7.77, P < 0.01). The expression of p-AMPK in HG+Lv-miR1 group was higher than that in HG+Lv-Vehicle group (p-AMPK/t-AMPK: 60.52±5.16 vs. 44.72±3.29, P < 0.05). Compared with HG+Lv-Vehicle group, the expressions of collagen, MMP, LC3B-II and p62/SQSTM1 in HG+Lv-miR1 group were significantly decreased; after the treatment with AMPK inhibitor, the expressions of collagen, MMP, LC3B-II, p62/SQSTM1 were significantly increased (HG+Lv-Vehicle+CC group vs. HG+Lv-Vehicle group: collagen I/ß-actin: 158.74±13.21 vs. 100.00±7.64, collagen III/ß-actin: 177.38±17.31 vs. 100.00±5.18, MMP-2/ß-actin: 130.09±14.31 vs. 100.00±10.47, MMP-9/ß-actin: 215.54±20.92 vs. 100.00±11.28, LC3B-II/ß-actin: 159.34±13.83 vs. 100.00±6.44, p62/SQSTM1/ß-actin: 201.01±24.02 vs. 100.00±8.62; HG+Lv-miR1+CC group vs. HG+Lv-miR1 group: collagen I/ß-actin: 108.69±9.93 vs. 80.83±7.24, collagen III/ß-actin: 127.68±10.46 vs. 81.56±9.97, MMP-2/ß-actin: 106.66±10.21 vs. 74.80±7.43, MMP-9/ ß-actin: 145.65±11.56 vs. 74.63±10.55, LC3B-II/ß-actin: 150.15±13.28 vs. 22.98±2.87, p62/SQSTM1/ß-actin: 130.48±10.74 vs. 49.90±2.27, all P < 0.05). CONCLUSIONS: miR-1 gene silencing inhibits myocardial fibrosis induced by high glucose, its mechanism may be related to the up-regulation of p-AMPK, which can recover autophagy flux.


Asunto(s)
Fibroblastos , Proteínas Quinasas Activadas por AMP , Animales , Glucosa , MicroARNs , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Ápice del Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...