Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(1): 102158, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439912

RESUMEN

Male infertility has emerged as a global issue, partly attributed to psychological stress. However, the cellular and molecular mechanisms underlying the adverse effects of psychological stress on male reproductive function remain elusive. We created a psychologically stressed model using terrified-sound and profiled the testes from stressed and control rats using single-cell RNA sequencing. Comparative and comprehensive transcriptome analyses of 11,744 testicular cells depicted the cellular landscape of spermatogenesis and revealed significant molecular alterations of spermatogenesis suffering from psychological stress. At the cellular level, stressed rats exhibited delayed spermatogenesis at the spermatogonia and pachytene phases, resulting in reduced sperm production. Additionally, psychological stress rewired cellular interactions among germ cells, negatively impacting reproductive development. Molecularly, we observed the down-regulation of anti-oxidation-related genes and up-regulation of genes promoting reactive oxygen species (ROS) generation in the stress group. These alterations led to elevated ROS levels in testes, affecting the expression of key regulators such as ATF2 and STAR, which caused reproductive damage through apoptosis or inhibition of testosterone synthesis. Overall, our study aimed to uncover the cellular and molecular mechanisms by which psychological stress disrupts spermatogenesis, offering insights into the mechanisms of psychological stress-induced male infertility in other species and promises in potential therapeutic targets.

2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903416

RESUMEN

The emergence of single-cell RNA sequencing (scRNA-seq) technology has revolutionized the identification of cell types and the study of cellular states at a single-cell level. Despite its significant potential, scRNA-seq data analysis is plagued by the issue of missing values. Many existing imputation methods rely on simplistic data distribution assumptions while ignoring the intrinsic gene expression distribution specific to cells. This work presents a novel deep-learning model, named scMultiGAN, for scRNA-seq imputation, which utilizes multiple collaborative generative adversarial networks (GAN). Unlike traditional GAN-based imputation methods that generate missing values based on random noises, scMultiGAN employs a two-stage training process and utilizes multiple GANs to achieve cell-specific imputation. Experimental results show the efficacy of scMultiGAN in imputation accuracy, cell clustering, differential gene expression analysis and trajectory analysis, significantly outperforming existing state-of-the-art techniques. Additionally, scMultiGAN is scalable to large scRNA-seq datasets and consistently performs well across sequencing platforms. The scMultiGAN code is freely available at https://github.com/Galaxy8172/scMultiGAN.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Secuenciación del Exoma , Análisis de Datos , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
5.
Front Oncol ; 12: 933210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875102

RESUMEN

Necroptosis is a programmed form of necrotic cell death in regulating cancer ontogenesis, progression, and tumor microenvironment (TME) and could drive tumor-infiltrating cells to release pro-inflammatory cytokines, incurring strong immune responses. Nowadays, there are few identified biomarkers applied in clinical immunotherapy, and it is increasingly recognized that high levels of tumor necroptosis could enhance the response to immunotherapy. However, comprehensive characterization of necroptosis associated with TME and immunotherapy in Hepatocellular carcinoma (HCC) remains unexplored. Here, we computationally characterized necroptosis landscape in HCC samples from TCGA and ICGA cohorts and stratified them into two necroptosis clusters (A or B) with significantly different characteristics in clinical prognosis, immune cell function, and TME-landscapes. Additionally, to further evaluate the necroptosis levels of each sample, we established a novel necroptosis-related gene score (NRGscore). We further investigated the TME, tumor mutational burden (TMB), clinical response to immunotherapy, and chemotherapeutic drug sensitivity of HCC subgroups stratified by the necroptosis landscapes. The NRGscore is robust and highly predictive of HCC clinical outcomes. Further analysis indicated that the high NRGscore group resembles the immune-inflamed phenotype while the low score group is analogous to the immune-exclusion or metabolism phenotype. Additionally, the high NRGscore group is more sensitive to immune checkpoint blockade-based immunotherapy, which was further validated using an external HCC cohort, metastatic melanoma cohort, and advanced urothelial cancer cohort. Besides, the NRGscore was demonstrated as a potential biomarker for chemotherapy, wherein the high NRGscore patients with more tumor stem cell composition could be more sensitive to Cisplatin, Doxorubicin, Paclitaxel-based chemotherapy, and Sorafenib therapy. Collectively, a comprehensive characterization of the necroptosis in HCC suggested its implications for predicting immune infiltration and response to immunotherapy of HCC, providing promising strategies for treatment.

6.
Front Immunol ; 13: 890150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686121

RESUMEN

As the most common type of renal cell carcinoma (RCC), the renal clear cell carcinoma (ccRCC) is highly malignant and insensitive to chemotherapy or radiotherapy. Although systemic immunotherapies have been successfully applied to ccRCC in recent years, screening for patients who can benefit most from these therapies is still essential and challenging due to immunological heterogeneity of ccRCC patients. To this end, we implemented a series of deep investigation on the expression and clinic data of ccRCC from The Cancer Genome Atlas (TCGA) International Consortium for Cancer Genomics (ICGC). We identified a total of 946 immune-related genes that were differentially expressed. Among them, five independent genes, including SHC1, WNT5A, NRP1, TGFA, and IL4R, were significantly associated with survival and used to construct the immune-related prognostic differential gene signature (IRPDGs). Then the ccRCC patients were categorized into high-risk and low-risk subgroups based on the median risk score of the IRPDGs. IRPDGs subgroups displays distinct genomic and immunological characteristics. Known immunotherapy-related genes show different mutation burden, wherein the mutation rate of VHL was higher than 40% in the two IRPDGs subgroups, and SETD2 and BAP1 mutations differed most between two groups with higher frequency in the high-risk subgroup. Moreover, IRPDGs subgroups had different abundance in tumor-infiltrating immune cells (TIICs) with distinct immunotherapy efficacy. Plasma cells, regulatory cells (Tregs), follicular helper T cells (Tfh), and M0 macrophages were enriched in the high-risk group with a higher tumor immune dysfunction and rejection (TIDE) score. In contrast, the low-risk group had abundant M1 macrophages, mast cell resting and dendritic cell resting infiltrates with lower TIDE score and benefited more from immune checkpoint inhibitors (ICI) treatment. Compared with other biomarkers, such as TIDE and tumor inflammatory signatures (TIS), IRPDGs demonstrated to be a better biomarker for assessing the prognosis of ccRCC and the efficacy of ICI treatment with the promise in screening precise patients for specific immunotherapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Humanos , Inmunoterapia , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/terapia , Pronóstico
7.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34791021

RESUMEN

The innovation of biotechnologies has allowed the accumulation of omics data at an alarming rate, thus introducing the era of 'big data'. Extracting inherent valuable knowledge from various omics data remains a daunting problem in bioinformatics. Better solutions often need some kind of more innovative methods for efficient handlings and effective results. Recent advancements in integrated analysis and computational modeling of multi-omics data helped address such needs in an increasingly harmonious manner. The development and application of machine learning have largely advanced our insights into biology and biomedicine and greatly promoted the development of therapeutic strategies, especially for precision medicine. Here, we propose a comprehensive survey and discussion on what happened, is happening and will happen when machine learning meets omics. Specifically, we describe how artificial intelligence can be applied to omics studies and review recent advancements at the interface between machine learning and the ever-widest range of omics including genomics, transcriptomics, proteomics, metabolomics, radiomics, as well as those at the single-cell resolution. We also discuss and provide a synthesis of ideas, new insights, current challenges and perspectives of machine learning in omics.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Biología Computacional/métodos , Genómica/métodos , Proteómica/métodos
10.
Am J Hum Genet ; 107(3): 461-472, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32781045

RESUMEN

RNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous SNP as replicates, we formulate ASAS detection using PAIRADISE as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates. PAIRADISE outperforms alternative statistical models in simulation studies. Applying PAIRADISE to replicate RNA-seq data of a single individual and to population-scale RNA-seq data across many individuals, we detect ASAS events associated with genome-wide association study (GWAS) signals of complex traits or diseases. Additionally, PAIRADISE ASAS analysis detects the effects of rare variants on alternative splicing. PAIRADISE provides a useful computational tool for elucidating the genetic variation and phenotypic association of alternative splicing in populations.


Asunto(s)
Empalme Alternativo/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Transcriptoma/genética , Alelos , Femenino , Perfilación de la Expresión Génica , Genética de Población/métodos , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Estadísticos , RNA-Seq , Secuenciación del Exoma
11.
Nucleic Acids Res ; 48(15): e85, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32588900

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) enables the characterization of transcriptomic profiles at the single-cell resolution with increasingly high throughput. However, it suffers from many sources of technical noises, including insufficient mRNA molecules that lead to excess false zero values, termed dropouts. Computational approaches have been proposed to recover the biologically meaningful expression by borrowing information from similar cells in the observed dataset. However, these methods suffer from oversmoothing and removal of natural cell-to-cell stochasticity in gene expression. Here, we propose the generative adversarial networks (GANs) for scRNA-seq imputation (scIGANs), which uses generated cells rather than observed cells to avoid these limitations and balances the performance between major and rare cell populations. Evaluations based on a variety of simulated and real scRNA-seq datasets show that scIGANs is effective for dropout imputation and enhances various downstream analysis. ScIGANs is robust to small datasets that have very few genes with low expression and/or cell-to-cell variance. ScIGANs works equally well on datasets from different scRNA-seq protocols and is scalable to datasets with over 100 000 cells. We demonstrated in many ways with compelling evidence that scIGANs is not only an application of GANs in omics data but also represents a competing imputation method for the scRNA-seq data.


Asunto(s)
RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Transcriptoma/genética , Biología Computacional , ARN/genética , ARN Mensajero/genética , Secuenciación del Exoma/métodos
12.
Gene ; 715: 144012, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31357021

RESUMEN

Long noncoding RNAs (lncRNAs) have been shown to play an important role in tumor biogenesis and prognosis. The glioma is a grade classified cancer, however, we still lack the knowledge on their function during glioma progression. While previous studies have shown how lncRNAs regulate protein-coding gene epigenetically, it is still unclear how lncRNAs are regulated epigenetically. In this study, we firstly analyzed the RNA-seq data systematically across grades II, IV, and IV of glioma samples. We identified 60 lncRNAs that are significantly differentially expressed over disease progression (DElncRNA), including well-known PVT1, HOTAIR, H19 and rarely studied CARD8-AS, MIR4435-2HG. Secondly, by integrating HM450K methylation microarray data, we demonstrated that some of the lncRNAs are epigenetically regulated by methylation. Thirdly, we developed a DESeq2-GSEA-ceRNA-survival analysis strategy to investigate their functions. Particularly, MIR4435-2HG is highly expressed in high-grade glioma and may have an impact on EMT and TNFα signaling pathway by functioning as a miRNA sponge of miR-125a-5p and miR-125b-5p to increase the expression of CD44. Our results revealed the dynamic expression of lncRNAs in glioma progression and their epigenetic regulation mechanism.


Asunto(s)
Metilación de ADN , ADN de Neoplasias , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma , MicroARNs , ARN Largo no Codificante , ARN Neoplásico , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Perfilación de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
13.
Front Genet ; 9: 410, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319691

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. Although genome-wide association study (GWAS) have reported hundreds of single-nucleotide polymorphisms (SNPs) and genes linked to AD, the mechanisms about how these SNPs modulate the development of AD remain largely unknown. In this study, we performed GWAS for three traits in cerebrospinal fluid (CSF) and one clinical trait in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our analysis identified five most significant AD related SNPs (FDR < 0.05) within or proximal to APOE, APOC1, and TOMM40. One of the SNPs was co-inherited with APOE allele 4, which is the most important genetic risk factor for AD. Three of the five SNPs were located in promoter or enhancer regions, and transcription factor (TF) binding affinity calculations showed dramatic changes (| Log2FC| > 2) of three TFs (PLAG1, RREB1, and ZBTB33) for two motifs containing SNPs rs2075650 and rs157580. In addition, our GWAS showed that both rs2075650 and rs157580 were significantly associated with the poliovirus receptor-related 2 (PVRL2) gene (FDR < 0.25), which is involved in spreading of herpes simplex virus (HSV). The altered regulation of PVRL2 may increase the susceptibility AD patients to HSV and other virus infections of the brain. Our work suggests that AD is a type of immune disorder driven by viral or microbial infections of the brain during aging.

14.
Genome Biol ; 19(1): 133, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217220

RESUMEN

BACKGROUND: Understanding the embryonic stem cell (ESC) fate decision between self-renewal and proper differentiation is important for developmental biology and regenerative medicine. Attention has focused on mechanisms involving histone modifications, alternative pre-messenger RNA splicing, and cell-cycle progression. However, their intricate interrelations and joint contributions to ESC fate decision remain unclear. RESULTS: We analyze the transcriptomes and epigenomes of human ESC and five types of differentiated cells. We identify thousands of alternatively spliced exons and reveal their development and lineage-dependent characterizations. Several histone modifications show dynamic changes in alternatively spliced exons and three are strongly associated with 52.8% of alternative splicing events upon hESC differentiation. The histone modification-associated alternatively spliced genes predominantly function in G2/M phases and ATM/ATR-mediated DNA damage response pathway for cell differentiation, whereas other alternatively spliced genes are enriched in the G1 phase and pathways for self-renewal. These results imply a potential epigenetic mechanism by which some histone modifications contribute to ESC fate decision through the regulation of alternative splicing in specific pathways and cell-cycle genes. Supported by experimental validations and extended datasets from Roadmap/ENCODE projects, we exemplify this mechanism by a cell-cycle-related transcription factor, PBX1, which regulates the pluripotency regulatory network by binding to NANOG. We suggest that the isoform switch from PBX1a to PBX1b links H3K36me3 to hESC fate determination through the PSIP1/SRSF1 adaptor, which results in the exon skipping of PBX1. CONCLUSION: We reveal the mechanism by which alternative splicing links histone modifications to stem cell fate decision.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias/metabolismo , Código de Histonas , Diferenciación Celular , División Celular , Células Madre Embrionarias/citología , Exones , Fase G2 , Humanos , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo
15.
Methods Mol Biol ; 1754: 327-374, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29536452

RESUMEN

Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Separación Celular/instrumentación , Separación Celular/métodos , Epigénesis Genética/genética , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Genómica/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Humanos , Captura por Microdisección con Láser/instrumentación , Captura por Microdisección con Láser/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Polimorfismo de Nucleótido Simple/genética , ARN/genética , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ARN/instrumentación , Análisis de la Célula Individual/instrumentación , Transcriptoma/genética
16.
Nucleic Acids Res ; 45(21): 12100-12112, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036709

RESUMEN

Alternative splicing (AS) is a genetically and epigenetically regulated pre-mRNA processing to increase transcriptome and proteome diversity. Comprehensively decoding these regulatory mechanisms holds promise in getting deeper insights into a variety of biological contexts involving in AS, such as development and diseases. We assembled splicing (epi)genetic code, DeepCode, for human embryonic stem cell (hESC) differentiation by integrating heterogeneous features of genomic sequences, 16 histone modifications with a multi-label deep neural network. With the advantages of epigenetic features, DeepCode significantly improves the performance in predicting the splicing patterns and their changes during hESC differentiation. Meanwhile, DeepCode reveals the superiority of epigenomic features and their dominant roles in decoding AS patterns, highlighting the necessity of including the epigenetic properties when assembling a more comprehensive splicing code. Moreover, DeepCode allows the robust predictions across cell lineages and datasets. Especially, we identified a putative H3K36me3-regulated AS event leading to a nonsense-mediated mRNA decay of BARD1. Reduced BARD1 expression results in the attenuation of ATM/ATR signalling activities and further the hESC differentiation. These results suggest a novel candidate mechanism linking histone modifications to hESC fate decision. In addition, when trained in different contexts, DeepCode can be expanded to a variety of biological and biomedical fields.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Código de Histonas , Aprendizaje Automático , Redes Neurales de la Computación , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Nucleic Acids Res ; 44(20): e152, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27484480

RESUMEN

Module identification is a frequently used approach for mining local structures with more significance in global networks. Recently, a wide variety of bilayer networks are emerging to characterize the more complex biological processes. In the light of special topological properties of bilayer networks and the accompanying challenges, there is yet no effective method aiming at bilayer module identification to probe the modular organizations from the more inspiring bilayer networks. To this end, we proposed the pseudo-3D clustering algorithm, which starts from extracting initial non-hierarchically organized modules and then iteratively deciphers the hierarchical organization of modules according to a bottom-up strategy. Specifically, a modularity function for bilayer modules was proposed to facilitate the algorithm reporting the optimal partition that gives the most accurate characterization of the bilayer network. Simulation studies demonstrated its robustness and outperformance against alternative competing methods. Specific applications to both the soybean and human miRNA-gene bilayer networks demonstrated that the pseudo-3D clustering algorithm successfully identified the overlapping, hierarchically organized and highly cohesive bilayer modules. The analyses on topology, functional and human disease enrichment and the bilayer subnetwork involved in soybean fat biosynthesis provided both the theoretical and biological evidence supporting the effectiveness and robustness of pseudo-3D clustering algorithm.


Asunto(s)
Análisis por Conglomerados , Biología Computacional/métodos , Redes Reguladoras de Genes , MicroARNs/genética , Algoritmos , Simulación por Computador , Ácidos Grasos/biosíntesis , Reproducibilidad de los Resultados , Glycine max/genética , Glycine max/metabolismo
20.
PLoS One ; 9(11): e113907, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25423109

RESUMEN

Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.


Asunto(s)
Redes Reguladoras de Genes , Genes de Plantas , Glycine max/genética , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...