Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Adv Mater ; : e2406106, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108043

RESUMEN

The strong Coulombic interactions between Al3+ and traditional inorganic crystalline cathodes present a significant obstacle in developing high-performance rechargeable aluminum batteries (RABs) that hold promise for safe and sustainable stationary energy storage. While accommodating chloroaluminate ions (AlCl4 -, AlCl2+, etc.) in redox-active organic compounds offers a promising solution for RABs, the issues of dissolution and low ionic/electronic conductivities plague the development of organic cathodes. Herein, electron donors are synthetically connected with acceptors to create crosslinked, bipolar-conjugated polymer cathodes. These cathodes exhibit overlapped redox potential ranges for both donors and acceptors in highly concentrated AlCl3-based ionic liquid electrolytes. This approach strategically enables on-site doping of the polymer backbones during redox reactions involving both donor and acceptor units, thereby enhancing the electron/ion transfer kinetics within the resultant polymer cathodes. Based on the optimal donor/acceptor combination, the bipolar polymer cathodes can deliver a high specific capacity of 205 mAh g-1 by leveraging the co-storage of AlCl4 - and AlCl2+. The electrodes exhibit excellent rate performance, a stable cycle life of 60 000 cycles, and function efficiently at high mass loadings, i.e., 100 mg cm-2, and at low temperatures, i.e., -30 °C. The findings exemplify the exploration of high-performing conjugated polymer cathodes for RABs through rational structural design.

2.
Chin Med ; 19(1): 108, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153974

RESUMEN

BACKGROUND: Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis constitutes a pivotal response by surgical trauma, manifesting as a critical aspect of the acute stress reaction. This hyperactivity resulted in adverse surgical outcomes and is often associated with increased postoperative anxiety. Increased evidence suggests that Nesfatin-1 plays a crucial role in stress responses and stress-related psychiatric disorders. Electroacupuncture (EA) is widely used to alleviate stress responses and anxiety, although its mechanism of action remains unclear. This study aimed to assess the mechanisms by which hypothalamic Nesfatin-1 contribute to the alleviation of HPA axis hyperactivity and anxiety by EA. METHODS: Partial hepatectomy (HT) was performed to simulate surgical trauma, and EA was applied at Zusanli (ST36) and Sanyinjiao (SP6). The levels of hypothalamic Nesfatin-1, c-Fos, and corticotropin-releasing hormone (CRH) were detected, and serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were regarded as indicators of HPA axis activity. Anxiety levels were assessed through open field tests (OFT), elevated plus maze (EPM), and light-dark box tests (LDBT). To investigate the role of Nesfatin-1, its expression was modulated using stereotactic viral injections or plasmid transfections. Transcriptome sequencing was employed to explore the downstream signaling pathways of Nesfatin-1. Additionally, brain cannula implantation was performed to facilitate targeted drug administration. RESULTS: Our findings demonstrated that EA reduced the hypothalamic overexpression of CRH and Nesfatin-1, as well as serum levels of ACTH and CORT. Additionally, it alleviated anxiety-like behaviors resulting from surgical trauma. We observed that overexpression of Nesfatin-1 in the hypothalamic paraventricular nucleus (PVN) triggered hyperactivity of the HPA axis and anxiety. Conversely, knocking down Nesfatin-1 in the PVN reversed these effects caused by surgical trauma. Transcriptome sequencing identified the extracellular regulated protein kinases (ERK)/cAMP-response element binding protein (CREB) pathway as a key mediator in the impacts of surgical trauma and EA on the hypothalamus. Both in vivo and in vitro studies showed that overexpression of Nesfatin-1 activated the ERK/CREB pathway. Furthermore, administering ERK or CREB inhibitors into the PVN mitigated HPA axis hyperactivity and anxiety-like behaviors induced by surgical trauma. Finally, EA was observed to decrease the phosphorylation levels of ERK and CREB in the PVN. CONCLUSION: EA alleviates HPA axis hyperactivity and anxiety-like behaviors caused by surgical trauma through inhibition of Nesfatin-1/ERK/CREB pathway in the hypothalamus.

3.
BMC Gastroenterol ; 24(1): 263, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138423

RESUMEN

BACKGROUND: Neoadjuvant chemoradiotherapy (NCRT) followed by total mesorectal excision (TME) is the standard treatment for locally advanced rectal cancer (LARC). Mucinous adenocarcinoma (MAC) is a potential poor prognosis subgroup of rectal cancer. However, the predictive value of MAC in NCRT treatment of LARC is controversial. METHODS: A comprehensive literature search of PubMed, Embase, and the Cochrane Library was performed. All studies examining the effect of MAC on CRT response in LARC were included. Outcomes of MAC were compared with non-specific adenocarcinoma (AC) by using random-effects methods. Data were presented as odds ratios (ORs) with 95% confidence intervals (CIs). The main outcomes were the rates of pathological complete response (pCR), tumor and nodal down-staging, positive resection margin rate, local recurrence, and overall mortality. RESULTS: Fifteen studies containing comparative data on outcomes in a total of 9,238 patients receiving NCRT for LARC were eligible for inclusion. MAC had a reduced rate of pCR (OR, 0.38; 95% CI, 0.18-0.78) and tumor down-staging (OR, 0.31; 95% CI, 0.22-0.44) following NCRT compared with AC. MAC did not significantly affect nodal down-staging (OR, 0.42; 95% CI, 0.16-1.12) after NCRT. CONCLUSION: MAC of LARC was found to be a negative predictor of response to NCRT with lower rates of pCR and tumor down-staging for LARC. The nodal down-staging of MAC was relatively lower than that of AC, although the differences were not statistically significant.


Asunto(s)
Adenocarcinoma Mucinoso , Terapia Neoadyuvante , Neoplasias del Recto , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/mortalidad , Humanos , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/patología , Adenocarcinoma Mucinoso/mortalidad , Estadificación de Neoplasias , Adenocarcinoma/terapia , Adenocarcinoma/patología , Adenocarcinoma/mortalidad , Recurrencia Local de Neoplasia , Pronóstico , Resultado del Tratamiento , Quimioradioterapia , Quimioradioterapia Adyuvante , Márgenes de Escisión
4.
Biomolecules ; 14(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39062587

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. The unlimited proliferation of tumor cells is one of the key features resulting in the malignant development and progression of CRC. Consequently, understanding the potential proliferation and growth molecular mechanisms and developing effective therapeutic strategies have become key in CRC treatment. Pyroptosis is an emerging type of regulated cell death (RCD) that has a significant role in cells proliferation and growth. For the last few years, numerous studies have indicated a close correlation between pyroptosis and the occurrence, progression, and treatment of many malignancies, including CRC. The development of effective therapeutic strategies to inhibit tumor growth and proliferation has become a key area in CRC treatment. Thus, this review mainly summarized the different pyroptosis pathways and mechanisms, the anti-tumor (tumor suppressor) and protective roles of pyroptosis in CRC, and the clinical and prognostic value of pyroptosis in CRC, which may contribute to exploring new therapeutic strategies for CRC.


Asunto(s)
Neoplasias Colorrectales , Piroptosis , Piroptosis/efectos de los fármacos , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Proliferación Celular , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
5.
Biomolecules ; 14(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062593

RESUMEN

This study sought to explore potential roles of endothelial ferroptosis in radiation-associated atherosclerosis (RAA) and molecular mechanisms behind this phenomenon. Here, an in vivo RAA mouse model was used and treated with ferroptosis inhibitors. We found that the RAA group had a higher plaque burden and a reduction in endothelial cells with increased lipid peroxidation compared to the control group, while ameliorated by liproxstatin-1. In vitro experiments further confirmed that radiation induced the occurrence of ferroptosis in human artery endothelial cells (HAECs). Then, proteomics analysis of HAECs identified domain-containing protein 2 (DDHD2) as a co-differentially expressed protein, which was enriched in the lipid metabolism pathway. In addition, the level of lipid peroxidation was elevated in DDHD2-knockdown HAECs. Mechanistically, a significant decrease in the protein and mRNA expression of glutathione peroxidase 4 (GPX4) was observed in HAECs following DDHD2 knockdown. Co-immunoprecipitation assays indicated a potential interaction between DDHD2 and nuclear factor erythroid 2-related factor 2 (Nrf2). The downregulation of Nrf2 protein was also detected in DDHD2-knockdown HAECs. In conclusion, our findings suggest that radiation-induced endothelial ferroptosis accelerates atherosclerosis, and DDHD2 is a potential regulatory protein in radiation-induced endothelial ferroptosis through the Nrf2/GPX4 pathway.


Asunto(s)
Aterosclerosis , Células Endoteliales , Ferroptosis , Factor 2 Relacionado con NF-E2 , Fosfolipasas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/etiología , Aterosclerosis/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Peroxidación de Lípido , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Transducción de Señal , Fosfolipasas/genética , Fosfolipasas/metabolismo
6.
Int J Biol Macromol ; 274(Pt 1): 133322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908646

RESUMEN

CD47, a cell surface protein known for inhibiting phagocytosis, plays a critical role in the tumor microenvironment (TME) and is a potential biomarker for cancer. However, directly applying αCD47, a hydrophilic macromolecular antibody that targets CD47, in vivo for cancer detection can have adverse effects on normal cells, cause systemic toxicities, and lead to resistance against anti-cancer therapies. In this study, we developed a novel complex incorporating aluminum-based metal-organic frameworks (Al-MOF) loaded with indocyanine green (ICG), αCD47, and resiquimod (R848), a hydrophobic small molecule Toll-like receptor 7/8 (TLR7/8) agonist. Upon activation with an infrared 808 nm laser, the nanocomposites exhibited photothermal effects that triggered the release of the loaded reagents, induced ROS production, and induced changes in the TME. This led to the polarization of immune-suppressive M2 macrophages towards an immune-stimulatory M1 phenotype, promoted dendritic cell (DC) maturation, and enabled mature DCs to facilitate antigen presentation, T-cell activation, and critical roles in tumor immunity. Furthermore, in vivo imaging successfully detected the specific binding of αCD47 with CD47 on tumor cells. Overall, the complex composed of αCD47 antibody and toll-like receptor agonist showed promising efficacy in both tumor diagnosis and therapy, providing a potential strategy for detecting early lung cancer and modulating the tumor microenvironment for improved treatment outcomes.


Asunto(s)
Antígeno CD47 , Neoplasias Pulmonares , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Animales , Humanos , Ratones , Antígeno CD47/inmunología , Microambiente Tumoral/efectos de los fármacos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Imidazoles/química , Imidazoles/farmacología , Verde de Indocianina/química , Verde de Indocianina/farmacología , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Agonistas de los Receptores Toll-Like
7.
Adv Mater ; 36(32): e2405956, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819626

RESUMEN

Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high-temperature shock technology is employed to controllably introduce the Li-Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li-Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge-sharing octahedra across the ab plane to 4c site of corner-sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first-principles calculations, the unique multiscale coupling structure of Li-Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high-capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high-rate electrodes.

8.
Angew Chem Int Ed Engl ; 63(23): e202405405, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578834

RESUMEN

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

9.
ACS Appl Mater Interfaces ; 16(17): 22256-22264, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651607

RESUMEN

In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.

10.
Small ; 20(27): e2310756, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38361223

RESUMEN

P2-phase layered cathodes play a pivotal role in sodium-ion batteries due to their efficient Na+ intercalation chemistry. However, limited by crystal disintegration and interfacial instability, bulk and interfacial failure plague their electrochemical performance. To address these challenges, a structural enhancement combined with surface modification is achieved through trace Y doping. Based on a synergistic combination of experimental results and density functional theory (DFT) calculations, the introduction of partial Y ions at the Na site (2d) acts as a stabilizing pillar, mitigating the electrostatic repulsions between adjacent TMO2 slabs and thereby relieving internal structural stress. Furthermore, the presence of Y effectively optimizes the Ni 3d-O 2p hybridization, resulting in enhanced electronic conductivity and a notable rapid charging ability, with a capacity of 77.3 mA h g-1 at 40 C. Concurrently, the introduction of Y also induces the formation of perovskite nano-islands, which serve to minimize side reactions and modulate interfacial diffusion. As a result, the refined P2-Na0.65 Y0.025[Ni0.33Mn0.67]O2 cathode material exhibits an exceptionally low volume variation (≈1.99%), an impressive capacity retention of 83.3% even at -40 °C after1500 cycles at 1 C.

11.
Nat Commun ; 15(1): 1005, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307899

RESUMEN

Potassium-sulfur batteries attract tremendous attention as high-energy and low-cost energy storage system, but achieving high utilization and long-term cycling of sulfur remains challenging. Here we show a strategy of optimizing potassium polysulfides for building high-performance potassium-sulfur batteries. We design the composite of tungsten single atom and tungsten carbide possessing potassium polysulfide migration/conversion bi-functionality by theoretical screening. We create two ligand environments for tungsten in the metal-organic framework, which respectively transmute into tungsten single atom and tungsten carbide nanocrystals during pyrolysis. Tungsten carbide provide catalytic sites for potassium polysulfides conversion, while tungsten single atoms facilitate sulfides migration thereby significantly alleviating the insulating sulfides accumulation and the associated catalytic poisoning. Resultantly, highly efficient potassium-sulfur electrochemistry is achieved under high-rate and long-cycling conditions. The batteries deliver 89.8% sulfur utilization (1504 mAh g-1), superior rate capability (1059 mAh g-1 at 1675 mA g-1) and long lifespan of 200 cycles at 25 °C. These advances enlighten direction for future KSBs development.

12.
J Colloid Interface Sci ; 660: 246-256, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244493

RESUMEN

Although lithium-sulfur batteries (LSBs) are an attractive next-generation rechargeable battery with high theoretical energy density (2600 Wh kg-1) and specific capacity (1675 mA h g-1), the shuttle of soluble lithium polysulfides (LiPSs) is still the protruding obstacle to accelerate the redox reaction of LSBs. Here, cubic cobalt diselenide@carbon (CoSe2@C) derived from zeolite imidazole framework-67 (ZIF-67) was employed as the functional coating of polypropylene (PP) separator to efficiently adsorb and catalyze polysulfides, inhibit "shuttle effect" and improve the electrochemical reaction kinetics of LSBs. The CoSe2@C offers larger mesopore proportion of 77.19 % and abundant active sites to ensure space as a secondary reaction region, and infiltration of electrolyte and rapid transport of Li+. The involved adsorption and catalysis effect are discussed by static adsorption experiment, XPS, and Li2S nucleation kinetics analysis. The results show that CoSe2@C exhibits strong adsorption effect and catalytic activity on LiPSs, and CoSe2@C/PP cells display fast Li+ diffusion and improved redox kinetics (high Li2S nucleation peak current of 0.27 mA and deposition capacity of 148.46 mA h g-1). Ascribe to these advantages, the CoSe2@C/PP cell provides an initial discharge specific capacity of 1335.01 mA h g-1 at 0.1 C and a fine reversible capacity at 5.0 C, and achieves stable and durable lifespan with an average capacity decay rate of 0.12 % over 400 cycles at 0.5 C. This work could promote the practical application of metal selenides in the key components and devices for LSBs.

13.
Nanomicro Lett ; 16(1): 97, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285078

RESUMEN

Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.

14.
Curr Drug Saf ; 19(2): 309-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37254553

RESUMEN

BACKGROUND: Osimertinib is a third-generation Tyrosine Kinase inhibitor, mainly used in non-small cell lung cancer with EGFR mutation. Its efficacy and safety have been confirmed by clinical practice. Toxic epidermolysis necrotizing disease (TEN) is a severe drug eruption that is rare in clinics and has a high mortality rate. Toxic epidermal necrotic drug rash caused by Osimeritinib is even rarer. OBJECTIVE: To investigate the rare side effects of Osimertinib through a case of toxic Epidermal necrosis. CASE PRESENTATION: A 63-year-old female patient was diagnosed with lung adenocarcinoma with brain metastases, and genetic testing revealed an EGFR21 exon mutation. The disease progressed 24 days after the administration of gefitinib, then the patient switched to Osimertinib (80 mg QD) and, resulting in keratitis and secondary systemic toxic epidermolysis necrotizing disease (TEN). Finally, the patient died. CONCLUSION: Although the clinical use of osimertinib is becoming widespread, the side effects may not be fully understood. Clinicians should pay more attention to the occurrence of the side reaction and deal with it in time.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Erupciones por Medicamentos , Neoplasias Pulmonares , Enfermedades de la Piel , Femenino , Humanos , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Preparaciones Farmacéuticas , Antineoplásicos/efectos adversos , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Enfermedades de la Piel/tratamiento farmacológico , Necrosis/inducido químicamente , Necrosis/tratamiento farmacológico
15.
World J Surg ; 47(12): 3240-3249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792039

RESUMEN

BACKGROUND: This study aimed to investigate the potential of a combined score based on CYFRA 21-1 level and LMR as a prognostic predictor for patients with ESCC. METHODS: A total of 460 patients who underwent esophagectomy were analyzed, and three groups were established based on the CA-LMR score. OS and RFS were evaluated using the Kaplan-Meier analysis, and associated factors were analyzed by univariate and multivariate Cox analysis. A mpStage system was also established based on the CA-LMR score. RESULTS: The allocation of CA-LMR score of 0, 1, and 2 was 107 (23.3%), 280 (60.9%), and 73 (15.9%). There was a significant association between CA-LMR and male gender (P = 0.001), lower BMI (P = 0.035), longer tumor lesions (P = 0.002), and high pT, pN, pStage (P < 0.001, P = 0.011, P = 0.001). The 5-year OS rates for CA-LMR scores of 0, 1, and 2 were 75.4%, 60.2%, and 32.8%, respectively (P < 0.001). Multivariate analysis showed that CA-LMR score (P = 0.011) was an independent prognostic factor for OS. The proposed mpStage system, based on CA-LMR score, demonstrated superior discriminatory ability, monotonicity, homogeneity, and prognosis prediction ability over AJCC 8th pStage system. CONCLUSIONS: The CA-LMR score, combined with tumor marker and inflammatory index, could use as a potential prognostic indicator; moreover, our modified pStage system exhibited superior stratification and prognostic accuracy for patients with ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Masculino , Carcinoma de Células Escamosas de Esófago/cirugía , Carcinoma de Células Escamosas de Esófago/patología , Pronóstico , Monocitos/patología , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Linfocitos/patología , Estudios Retrospectivos
16.
Medicine (Baltimore) ; 102(36): e34665, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682186

RESUMEN

Flavonoids have been shown to be beneficial in a variety of inflammatory and metabolic diseases because of their anti-inflammatory and antioxidant properties. However, previous epidemiological studies have only demonstrated a negative correlation between flavonoid intake on inflammatory markers, and the optimal intake of dietary flavonoids and subclasses in terms of dietary anti-inflammatory efficacy remains undetermined. This study was based on 3 cycles (2007-2010, 2017-2018) of the National Health and Nutrition Examination Survey and the corresponding expanded flavonoid database. Weighted multiple linear regression was used to assess linear relationships between flavonoid intake and Dietary inflammation index (DII). Smoothed curve fit and a generalized additive model were used to investigate the nonlinear relationships and threshold effects, the 2-tailed linear regression model was used to find potential inflection points. A total of 12,724 adults were included in the study. After adjusting for potential confounders, flavonoid intake was significantly associated with DII, with the strongest negative association effect for flavonols (-0.40 [-0.45, -0.35]). In subgroup analyses stratified by sex, race, age, body mass index, education levels, and diabetes, flavonol intake maintained a significant negative linear correlation with DII. In addition, we found significant nonlinear relationships (L-shaped relationships) and threshold effects between total flavonoids, flavan-3-ols, and flavanols and DII, with inflection points of 437.65 mg/days, 157.79 mg/days, and 46.36 mg/days, respectively. Our results suggest a threshold for the dietary anti-inflammatory capacity of flavonoid intake in U.S. adults.


Asunto(s)
Flavonoides , Polifenoles , Adulto , Humanos , Encuestas Nutricionales , Antioxidantes , Índice de Masa Corporal , Inflamación
17.
NPJ Precis Oncol ; 7(1): 80, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37634047

RESUMEN

The genomic origin and development of the biphasic lung adenosquamous carcinoma (ASC) remain inconclusive. Here, we derived potential evolutionary trajectory of ASC through whole-exome sequencing, Stereo-seq, and patient-derived xenografts. We showed that EGFR and MET activating mutations were the main drivers in ASCs. Phylogenetically, these drivers and passenger mutations found in both components were trunk clonal events, confirming monoclonal origination. Comparison of multiple lesions also revealed closer genomic distance between lymph node metastases and the ASC component with the same phenotype. However, as mutational signatures of EGFR-positive lung squamous carcinomas (LUSCs) were more comparable to EGFR-positive ASCs than to wild-type LUSCs, we postulated different origination of these LUSCs, with ASC being the potential intermediate state of driver-positive LUSCs. Spatial transcriptomic profiling inferred transformation from adenocarcinoma to squamous cell carcinoma, which was then histologically captured in vivo. Together, our results explained the development of ASC and provided insights into future clinical decisions.

18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 278-283, 2023 May 30.
Artículo en Chino | MEDLINE | ID: mdl-37288628

RESUMEN

A protective device was designed that can be worn on the elderly, which consists of protective airbag, control box and protective mechanism. The combined acceleration, combined angular velocity and human posture angle are selected as the parameters to determine the fall, and the threshold algorithm and SVM algorithm are used to detect the fall. The protective mechanism is an inflatable device based on CO2 compressed air cylinder, and the equal-width cam structure is applied to its transmission part to improve the puncture efficiency of the compressed gas cylinder. A fall experiment was designed to obtain the combined acceleration and angular velocity eigenvalues of fall actions (forward fall, backward fall and lateral fall) and daily activities (sitting-standing, walking, jogging and walking up and down stairs), showing that the specificity and sensitivity of the protection module reached 92.1% and 84.4% respectively, which verified the feasibility of the fall protection device.


Asunto(s)
Monitoreo Ambulatorio , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Actividades Cotidianas , Caminata , Aceleración , Algoritmos
19.
ACS Appl Mater Interfaces ; 15(24): 29064-29071, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293868

RESUMEN

Organic electrode materials are composed of abundant elements, have diverse and designable molecular structures, and are relatively easily synthesized, promising a bright future for low-cost and large-scale energy storage. However, they are facing low specific capacity and low energy density. Herein, we report a high-energy-density organic electrode material, 1,5-dinitroanthraquinone, which is composed of two kinds of electrochemically active sites of nitro and carbonyl groups. They experience six- and four-electron reduction and are transformed into amine and methylene groups, respectively, in the presence of fluoroethylene carbonate (FEC) in the electrolyte. Drastically increased specific capacity and energy density are demonstrated with an ultrahigh specific capacity of 1321 mAh g-1 and a high voltage of ∼2.62 V, corresponding to a high energy density of 3400 Wh kg-1. This surpasses the electrode materials in commercial lithium batteries. Our findings provide an effective strategy to design high-energy-density and novel lithium primary battery systems.

20.
Adv Sci (Weinh) ; 10(23): e2302490, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37300359

RESUMEN

Organic electrode materials for lithium-ion batteries have attracted significant attention in recent years. Polymer electrode materials, as compared to small-molecule electrode materials, have the advantage of poor solubility, which is beneficial for achieving high cycling stability. However, the severe entanglement of polymer chains often leads to difficulties in preparing nanostructured polymer electrodes, which is vital for achieving fast reaction kinetics and high utilization of active sites. This study demonstrates that these problems can be solved by the in situ electropolymerization of electrochemically active monomers in nanopores of ordered mesoporous carbon (CMK-3), combining the advantages of the nano-dispersion and nano-confinement effects of CMK-3 and the insolubility of the polymer materials. The as-prepared nanostructured poly(1-naphthylamine)/CMK-3 cathode exhibits a high active site utilization of 93.7%, ultrafast rate capability of 60 A g-1 (≈320 C), and an ultralong cycle life of 10000 cycles at room temperature and 45000 cycles at -15 °C. The study herein provides a facile and effective method that can simultaneously solve both the dissolution problem of small-molecule electrode materials and the inhomogeneous dispersion issue of polymer electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...