Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chemother ; : 1-12, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706347

RESUMEN

Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.

2.
Front Plant Sci ; 15: 1393458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606077

RESUMEN

Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.

3.
Sci Total Environ ; 904: 166819, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673236

RESUMEN

Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Solanum lycopersicum , Antioxidantes/metabolismo , Silicio/farmacología , Silicio/análisis , Cadmio/análisis , Nanopartículas/toxicidad , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
4.
Plants (Basel) ; 12(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37447133

RESUMEN

MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.

5.
Plant Physiol ; 192(4): 2756-2767, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084381

RESUMEN

As a climbing organ, the tendril undergoes rapid elongation to increase its length to locate support within a short growth time. However, the molecular mechanism underlying this observation is poorly understood. Here, tendril development was divided into 4 stages in cucumber (Cucumis sativus L.) along with its growth. Phenotypic observations and section analyses showed that the rapid elongation of tendril primarily happened during stage 3 and was mainly due to cell expansion. RNA-seq analysis showed that PACLOBUTRAZOL-RESISTANCE4 (CsPRE4) was highly expressed in the tendril. Our RNAi studies in cucumber and transgenic overexpression in Arabidopsis (Arabidopsis thaliana) suggested that CsPRE4 functions as a conserved activator of cell expansion to promote cell expansion and tendril elongation. Through a triantagonistic HLH (helix-loop-helix)-HLH-bHLH (basic helix-loop-helix) cascade, CsPRE4-CsPAR1 (PHYTOCHROME RAPIDLY REGULATED1)-CsBEE1 (BR-ENHANCED EXPRESSION 1), CsPRE4 released the transcription factor CsBEE1, which activated expansin A12 (CsEXPA12) to loosen the cell wall structure in tendrils. Gibberellin (GA) promoted tendril elongation by modulating cell expansion, and CsPRE4 expression was induced by exogenous GA treatment, suggesting that CsPRE4 acts downstream of GA in regulating tendril elongation. In summary, our work suggested a CsPRE4-CsPAR1-CsBEE1-CsEXPA12 pathway in regulating cell expansion in cucumber tendrils, which might enable rapid tendril elongation to quickly locate support.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Braz J Microbiol ; 54(2): 655-664, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36930447

RESUMEN

Infection with P. aeruginosa, one of the most relevant opportunistic pathogens in hospital-acquired infections, can lead to high mortality due to its low antibiotic susceptibility to limited choices of antibiotics. Polymyxin as last-resort antibiotics is used in the treatment of systemic infections caused by multidrug-resistant P. aeruginosa strains, so studying the emergence of polymyxin-resistant was a must. The present study was designed to define genomic differences between paired polymyxin-susceptible and polymyxin-resistant P. aeruginosa strains and established polymyxin resistance mechanisms, and common chromosomal mutations that may confer polymyxin resistance were characterized. A total of 116 CRPA clinical isolates from patients were collected from three tertiary care hospitals in China during 2017-2021. Our study found that polymyxin B resistance represented 3.45% of the isolated carbapenem-resistant P. aeruginosa (CRPA). No polymyxin-resistant isolates were positive for mcr (1-8 and 10) gene and efflux mechanisms. Key genetic variations identified in polymyxin-resistant isolates involved missense mutations in parR, parS, pmrB, pmrA, and phoP. The waaL and PA5005 substitutions related to LPS synthesis were detected in the highest levels of resistant strain (R1). The missense mutations H398R in ParS (4/4), Y345H in PmrB (4/4), and L71R in PmrA (3/4) were the predominant. Results of the PCR further confirmed that mutation of pmrA, pmrB, and phoP individually or simultaneously did affect the expression level of resistant populations and can directly increase the expression of arnBCADTEF operon to contribute to polymyxin resistance. In addition, we reported 3 novel mutations in PA1945 (2129872_A < G, 2130270_A < C, 2130272_T < G) that may confer polymyxin resistance in P. aeruginosa. Our findings enriched the spectrum of chromosomal mutations, highlighted the complexity at the molecular level, and multifaceted interplay mechanisms underlying polymyxin resistance in P. aeruginosa.


Asunto(s)
Polimixinas , Infecciones por Pseudomonas , Humanos , Polimixinas/farmacología , Polimixinas/metabolismo , Polimixinas/uso terapéutico , Pseudomonas aeruginosa , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Genómica , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología
7.
New Phytol ; 239(1): 364-373, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967583

RESUMEN

Tendril is a morphological innovation during plant evolution, which provides the plants to obtain climbing ability. However, the tendril morphogenesis is poorly understood. A novel tendril morphogenesis defective mutant (tmd1) was identified in cucumber. The apical part of tendril was replaced by a leaf blade in tmd1 mutant, and it lost the climbing ability. Map-based cloning, qPCR detection, bioinformatic analysis, yeast one-hybrid assay, electrophoretic mobility shift assay, and luciferase assay were used to explore the molecular mechanism of CsaTMD1 in regulating tendril morphogenesis. CsaUFO was the candidate causal gene, and a fragment deletion within promoter impaired CsaUFO expression in tmd1 mutant. A conserved motif 1, which harbored two putative TCP transcription factor binding sites, was located within this deleted fragment. CsaTEN directly bound the motif 1 and positively regulated CsaUFO, and mutation in motif 1 removed this regulation. Our work shows a CsaTEN-CsaUFO module in regulating tendril morphogenesis, indicating that evolution of tendril in cucumber due to simply drive of CsaUFO by CsaTEN in tendril. Additionally, the conserved motif 1 provides a strategy for engineering tendril-less Cucurbitaceae crops.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Mutación/genética , Morfogénesis , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768277

RESUMEN

Cadmium (Cd) pollution is one of the major threats in agricultural production, and can cause oxidative damage and growth limitation in plants. MicroRNA398 (miR398) is involved in plant resistance to different stresses, and the post-transcriptional regulation of miR398 on CSDs plays a key role. Here, we report that miR398 was down-regulated in tomato in response to Cd stress. Simultaneously, CSD1 and SOD were up-regulated, with CSD2 unchanged, suggesting CSD1 is involved in miR398-induced regulation under Cd stress. In addition, the role of miR398 in Cd tolerance in tomato was evaluated using a transgenic line overexpressing MIR398 (miR398#OE) in which the down-expression of miR398 was disrupted. The results showed that Cd stress induced more significant growth inhibition, oxidative damage, and antioxidant enzymes disorder in miR398#OE than that in wild type (WT). Moreover, higher Cd concentration in the shoot and xylem sap, and net Cd influx rate, were observed in miR398#OE, which could be due to the increased Cd uptake genes (IRT1, IRT2, and NRAMP2) and decreased Cd compartmentalization gene HMA3. Overall, our results indicate that down-regulated miR398 plays a protective role in tomato against Cd stress by modulating the activity of antioxidant enzymes and Cd uptake and translocation.


Asunto(s)
MicroARNs , Solanum lycopersicum , Antioxidantes , Solanum lycopersicum/genética , Cadmio/toxicidad , Cadmio/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , MicroARNs/genética , Aclimatación , Regulación de la Expresión Génica de las Plantas
9.
Plant Sci ; 323: 111407, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932827

RESUMEN

Growth-regulating factors (GRFs) are plant-specific transcription factors, and their activities are regulated by miR396 and the GRF-GIF interaction. The miR396-GRFs/GIFs module determines organ size by regulating cell proliferation. However, it is largely unknown in cucumber. In this study, the CsmiR396-CsGRFs/CsGIFs module was investigated in cucumber. Five CsMIR396 loci (CsMIR396A-E), eight CsGRFs and two CsGIFs were identified. CsMIR396A-E was distributed within two clusters and coded three different mature CsmiR396, and all CsGRFs acted as the target of CsmiR396. Bioinformatic analyses showed that miR396s were classified into five types, while GRFs were classified into six groups in plants. The GRFs from group Ⅰ exhibited high diversity and harbored specific characteristics (truncated C-terminus or two WRC domains). qRT-PCR results showed that CsMIR396s (CsMIR396A, CsMIR396B and CsMIR396D) and mature CsmiR396 increased, whereas CsGRFs declined as leaf age increased. In contrast, CsMIR396E was highly expressed in young leaves and shoot tissue, and it was expressed in an age-independent pattern. Yeast two-hybrid assays showed that CsGRF3 strongly interacted with CsGIFs, while CsGRF5 weakly interacted with CsGIFs. Overexpression of CsGRF3 resulted in an enlarged organ size; in contrast, overexpression of CsGRF5, which belonged to group Ⅰ and harbored two WRC domains, resulted in a reduced organ size in Arabidopsis. Section analysis showed that cell proliferation was increased in CsGRF3OE plants, whereas it was decreased in CsGRF5OE plants. In summary, our results reveal the diversity of the CsmiR396-CsGRFs/CsGIFs module in cucumber, and that CsGRF3 and CsGRF5 play an opposite role in regulating cell proliferation.


Asunto(s)
Arabidopsis , Cucumis sativus , MicroARNs , Arabidopsis/genética , Proliferación Celular/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética
10.
Sci Rep ; 12(1): 9180, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655083

RESUMEN

The nodulin 26-like intrinsic protein (NIP) family belonging to a group of aquaporin proteins is unique to plants. NIPs have a wide of transport activities and are involved in developmental processes and stress tolerance. The well reported Lsi1 and Lsi6 belonging to NIP III were characterized as Si transporters. However, except Lsi1 and Lsi6, most NIPs remain unknown. Here, we identified 43 putative aquaporins in tomato. We found there are 12 NIPs, including 8 NIP I proteins, 3 NIP II proteins, and 1 NIP III protein among the 43 aquaporins. Also, there are two Si efflux transporters SlLsi2-1 and SlLsi2-2 identified by using Lsi2 proteins from other species. By analysing the phylogenetic relationships, conserved residues and expression patterns, we propose that three NIP I members (SlNIP-2, SlNIP-3 and SlNIP-11) may transport water, ammonia, urea, and boric acid, and contribute to pollen development. Three NIP II proteins (SlNIP-7, SlNIP-9 and SlNIP-12) may be boric acid facilitators, and affect plant growth and anther development. Overall, the study provides valuable candidates of Si transporters and other NIP proteins to further explore their roles in uptake and transport for silicon, boron, and other substrates in tomato.


Asunto(s)
Acuaporinas , Solanum lycopersicum , Acuaporinas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de la Membrana , Proteínas de Transporte de Membrana/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo
11.
Theor Appl Genet ; 135(8): 2735-2746, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35710636

RESUMEN

KEY MESSAGE: Map-based cloning and photoperiod response detection suggested that CsFT is the critical gene for cucumber photoperiod domestication. Photoperiod sensitivity is important for sensing seasonal changes and local adaptation. However, day-length sensitivity limits crop geographical adaptation and it should be modified during domestication. Cucumber was domesticated in southern Asia and is currently cultivated worldwide across a wide range of latitudes, but its photoperiod sensitivity and its change during cucumber domestication are unknown. Here, we confirmed wild cucumber (Hardwickii) was a short-day plant, and its flowering depends on short-day (SD) conditions, while the cultivated cucumber (9930) is a day-neutral plant that flowers independently of day length. A photoperiod sensitivity locus (ps-1) was identified by the 9930 × Hardwickii F2 segregating populations, which span a ~ 970 kb region and contain 60 predicted genes. RNA-seq analysis showed that the critical photoperiod pathway gene FLOWERING LOCUS T (CsFT) within the ps-1 locus exhibits differential expression between 9930 and Hardwickii, which was confirmed by qRT-PCR detection. CsFT in Hardwickii was sensitive to day length and could be significantly induced by SD conditions, whereas CsFT was highly expressed in 9930 and was insensitive to day length. Moreover, the role of CsFT in promoting flowering was verified by overexpression of CsFT in Arabidopsis. We also identified the genetic variations existing in the promoter of CsFT among the different geographic cucumbers and suggest they have possible roles in photoperiod domestication. The results of this study suggest that a variation in photoperiod sensitivity of CsFT is associated with day neutrality and early flowering in cultivated cucumber and could contribute to cucumber cultivation in diverse regions throughout the world.


Asunto(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Domesticación , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
New Phytol ; 224(2): 741-748, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295758

RESUMEN

Higher plants progress through a juvenile and an adult phase of development before they enter the reproductive phase. The transition from the juvenile to the adult phase is referred to as vegetative phase change, and this is signified by the production of trichomes on the abaxial side of leaf blades in Arabidopsis; however, the molecular mechanism underlying this process is poorly understood. We identified a dominant mutation (gl1-D) in a forward genetic screen that accelerates abaxial trichome production during shoot development. This phenotype is the result of a G-to-A substitution in the 3' noncoding region in the GLABRA1(GL1) gene. We show that TOE1, an AP2-like transcription factor that acts downstream of the miR156-SPL pathway, represses GL1 expression by directly binding to this site, and that gl1-D prevents TOE1 binding. Our work reveals a molecular link between vegetative phase change and abaxial trichome production in Arabidopsis, and answers a long-standing question of how the vegetative phase change pathway regulates vegetative traits.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/fisiología , Tricomas/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Clonación Molecular , Genes del Desarrollo , Mutación , Factores de Tiempo
13.
Plant Mol Biol ; 100(6): 571-578, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30953277

RESUMEN

KEY MESSAGE: A mutation in the nuclear localization signal of squamosa promoter binding like-protein 9 (SPL9) delays vegetative phase change by disrupting its nuclear localization. The juvenile-to-adult phase transition is a critical developmental process in plant development, and it is regulated by a decrease in miR156/157 and a corresponding increase in their targets, squamosa promoter binding protein-like (SPL) genes. SPL proteins contain a conserved SBP domain with putative nuclear localization signals (NLSs) at their C-terminals. Some SPLs promote vegetative phase change by promoting miR172 expression, but the function of nuclear localization signals in those SPLs remains unknown. Here, we identified a loss-of-function mutant, which we named del6, with delayed vegetative phase change phenotypes in a forward genetic screen. Map-based cloning, the whole genome resequencing, and allelic complementation test demonstrate that a G-to-A substitution in the SPL9 gene is responsible for the delayed vegetative phase change phenotypes. In del6, the mutation causes a substitution of the glutamine (Gln) for the conserved basic amino acid arginine (Arg) in the NLS of the SBP domain, and disrupts the normal nuclear localization and function of SPL9. Therefore, our work demonstrates that the NLSs in the SBP domain of SPL9 are indispensable for its nuclear localization and normal function in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Señales de Localización Nuclear , Regiones Promotoras Genéticas , Transactivadores/genética , Transactivadores/fisiología , Alelos , Arginina/química , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Genoma de Planta , Glutamina/química , MicroARNs/genética , Mutación , Fenotipo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
14.
Front Plant Sci ; 9: 1048, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079076

RESUMEN

Epigenetic regulation is referred to as changes in gene function that do not involve changes in the DNA sequence, it is usually accomplished by DNA methylation, histone modifications (repressive marks such as H3K9me, H3K27me, H2Aub, or active marks such as H3K4me, H3K36me, H3Ac), and chromatin remodeling (nucleosome composition, occupancy, and location). In plants, the shoot apex produces different lateral organs during development to give rise to distinguishable phases of a juvenile, an adult and a reproductive phase after embryogenesis. The juvenile-to-adult transition is a key developmental event in plant life cycle, and it is regulated by a decrease in the expression of a conserved microRNA-miR156/157, and a corresponding increase in the expression of its target genes encoding a set of plant specific SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) proteins. Recent work has revealed that the miR156/157-SPL pathway is the master regulator of juvenile-to-adult transition in plants, and genes in this pathway are subjected to epigenetic regulation, such as DNA methylation, histone modifications, and chromatin remodeling. In this review, we summarized the recent progress in understanding the epigenetic regulation of the miR156/157-SPL pathway during juvenile-to-adult transition and bring forward some perspectives of future research in this field.

15.
Planta ; 248(4): 813-826, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29934776

RESUMEN

MAIN CONCLUSION: Silencing of miR156 in rice confers enhanced resistance to brown planthopper through reducing JA and JA-Ile biosynthesis. Rice brown planthopper (BPH, Nilaparvata lugens Stål) threatens the sustainability of rice production and global food security. Due to the rapid adaptation of BPH to current germplasms in rice, development of novel types of resistant germplasms becomes increasingly important. Plant ontogenetic defense against pathogen and herbivores offers a broad spectrum and durable resistance, and has been experimentally tested in many plants; however, the underlying molecular mechanism remains unclear. miR156 is the master regulator of ontogeny in plants; modulation of miR156 is, therefore, expected to cause corresponding changes in BPH resistance. To test this hypothesis, we silenced miR156 using a target mimicry method in rice, and analyzed the resistance of miR156-silenced plants (MIM156) to BPH. MIM156 plants exhibited enhanced resistance to BPH based on analyses of honeydew excretion, nymph survival, fecundity of BPH, and the survival ratio of rice plants after BPH infestation. Molecular analysis indicated that the expression of MPK3, MPK6, and WRKY70, three genes involved in BPH resistance and jasmonic acid (JA) signaling, was altered in MIM156 plants. The JA and bioactive jasmonoyl-isoleucine levels and the expression of genes involved in JA biosynthesis were significantly reduced in MIM156 plants. Restoration of JA level by exogenous application increased the number of BPH feeding on MIM156 plants and reduced its resistance to BPH. Our findings suggest that miR156 negatively regulates BPH resistance by increasing JA level in rice; therefore, modulation of miR156-SPLs' pathway may offer a promising way to breed rice varieties with enhanced resistance against BPH and elite agronomically important traits.


Asunto(s)
Hemípteros/fisiología , MicroARNs/genética , Oryza/genética , Animales , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Fitomejoramiento , Plantas Modificadas Genéticamente
16.
Plant Cell ; 29(6): 1293-1304, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28536099

RESUMEN

Temporally regulated microRNAs have been identified as master regulators of developmental timing in both animals and plants. In plants, vegetative development is regulated by a temporal decrease in miR156 level, but how this decreased expression is initiated and then maintained during shoot development remains elusive. Here, we show that miR159 is required for the correct timing of vegetative development in Arabidopsis thaliana Loss of miR159 increases miR156 level throughout shoot development and delays vegetative development, whereas overexpression of miR159 slightly accelerated vegetative development. The repression of miR156 by miR159 is predominantly mediated by MYB33, an R2R3 MYB domain transcription factor targeted by miR159. Loss of MYB33 led to subtle precocious vegetative phase change phenotypes in spite of the significant downregulation of miR156. MYB33 simultaneously promotes the transcription of MIR156A and MIR156C, as well as their target, SPL9, by directly binding to the promoters of these three genes. Rather than acting as major players in vegetative phase change in Arabidopsis, our results suggest that miR159 and MYB33 function as modifiers of vegetative phase change; i.e., miR159 facilitates vegetative phase change by repressing MYB33 expression, thus preventing MYB33 from hyperactivating miR156 expression throughout shoot development to ensure correct timing of the juvenile-to-adult transition in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroARNs/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
17.
Plant Physiol ; 172(4): 2416-2428, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27803189

RESUMEN

Plants progress from a juvenile vegetative phase of development to an adult vegetative phase of development before they enter the reproductive phase. miR156 has been shown to be the master regulator of the juvenile-to-adult transition in plants. However, the mechanism of how miR156 is transcriptionally regulated still remains elusive. In a forward genetic screen, we identified that a mutation in the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) exhibited an accelerated vegetative phase change phenotype by reducing the expression of miR156, which in turn caused a corresponding increase in the levels of SQUAMOSA PROMOTER BINDING PROTEIN LIKE genes. BRM regulates miR156 expression by directly binding to the MIR156A promoter. Mutations in BRM not only increased occupancy of the -2 and +1 nucleosomes proximal to the transcription start site at the MIR156A locus but also the levels of trimethylated histone H3 at Lys 27. The precocious phenotype of brm mutant was partially suppressed by a second mutation in SWINGER (SWN), but not by a mutation in CURLEY LEAF, both of which are key components of the Polycomb Group Repressive Complex 2 in plants. Our results indicate that BRM and SWN act antagonistically at the nucleosome level to fine-tune the temporal expression of miR156 to regulate vegetative phase change in Arabidopsis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios Genéticos , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Lisina/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Mutación/genética , Nucleosomas/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica
18.
Antimicrob Agents Chemother ; 60(8): 5033-5, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216058

RESUMEN

The spread of the plasmid-mediated colistin resistance gene, mcr-1, into carbapenem-resistant Enterobacteriaceae (CRE) clinical isolates poses a significant threat to global health. Here we report the identification of three mcr-1-harboring carbapenem-resistant Escherichia coli strains, collected from three patients in two provinces in China. Our results show that mcr-1-harboring CRE strains have started to spread in different hospitals in China. In addition, this report presents the first description of chromosomal integration of mcr-1 into a carbapenem-resistant E. coli strain.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , Enterobacteriaceae/efectos de los fármacos , China , Cromosomas Bacterianos/genética , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hospitales , Pruebas de Sensibilidad Microbiana
19.
J Exp Bot ; 67(5): 1493-504, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26763975

RESUMEN

After germination, plants progress through juvenile and adult phases of vegetative development before entering the reproductive phase. The character and timing of these phases vary significantly between different plant species, which makes it difficult to know whether temporal variations in various vegetative traits represent the same, or different, developmental processes. miR156 has been shown to be the master regulator of vegetative development in plants. Overexpression of miR156 prolongs the juvenile phase of development, whereas knocking-down the level of miR156 promotes the adult phase of development. Therefore, artificial modulation of miR156 expression is expected to cause corresponding changes in vegetative-specific traits in different plant species, particularly in those showing no substantial difference in morphology during vegetative development. To identify specific traits associated with the juvenile-to-adult transition in tobacco, we examined the phenotype of transgenic tobacco plants with elevated or reduced levels of miR156. We found that leaf shape, the density of abaxial trichomes, the number of leaf veins, the number of stomata, the size and density of epidermal cells, patterns of epidermal cell staining, the content of chlorophyll and the rate of photosynthesis, are all affected by miR156. These newly identified miR156-regulated traits therefore can be used to distinguish between juvenile and adult phases of development in tobacco, and provide a starting point for future studies of vegetative phase change in the family Solanaceae.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/genética , Carácter Cuantitativo Heredable , Recuento de Células , Tamaño de la Célula , Clorofila/metabolismo , MicroARNs/metabolismo , Fenotipo , Fotosíntesis , Filogenia , Estomas de Plantas/citología , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Nicotiana/anatomía & histología , Tricomas/genética , Tricomas/crecimiento & desarrollo
20.
Insect Biochem Mol Biol ; 65: 68-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26070472

RESUMEN

BmECM25 (previously reported as BmVMP25) was previously predicted as a gene encoding the vitelline membrane protein in silkworm, Bombyx mori. In this study, we investigated the detail temporal and spatial patterns of BmECM25 protein. Western blot results showed that BmECM25 was expressed in the follicular epithelium cells from stages -6 to +1, and was then secreted into the oocytes. However, the abundance of BmECM25 decreased during the subsequent oogenesis and finally disappeared in the mature follicles. Immunofluorescence detection showed that BmECM25 locates inside the VM layer and forms a discontinuous layer. These features of BmECM25 suggest that it is an oocyte membrane matrix protein, not a vitelline membrane protein.


Asunto(s)
Bombyx/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Animales , Bombyx/genética , Bombyx/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Oocitos/metabolismo , Oogénesis , Folículo Ovárico/metabolismo , Membrana Vitelina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA