RESUMEN
Cubic gauche nitrogen (cg-N) has received wide attention for its exceptionally high energy density and environmental friendliness. However, traditional synthesis methods for cg-N predominantly rely on high-pressure techniques or the utilization of nanoconfined effects using highly toxic and sensitive sodium azide as precursor, which substantially restrict its practical application. On the basis of the first-principles simulations, we found that adsorption of potassium on the cg-N surface exhibits superior stabilization compared to sodium. Then, we chose safer potassium azide as precursor for synthesizing cg-N. Through plasma-enhanced chemical vapor deposition treatment, the free-standing cg-N was successfully synthesized without the need for high-pressure and nanoconfined effects. It demonstrated excellent thermal stability up to 760 K, and then rapid and intense thermal decomposition occurred, exhibiting typical thermal decomposition behaviors of high-energy-density materials. The explosion parameters were also measured using laser-induced plasma spectroscopy. Our work has substantially promoted the practical application of cg-N as HEDMs.
RESUMEN
Raising attentions have focused on how to alleviate greenhouse gas (GHG) emissions from orchard system while simultaneously increase fruit production. Microalgae-based biofertilizer represents a promising resource for improving soil fertility and higher productivity. However, the effects of microalgae application more especially live microalgae on GHG emissions are understudied. In this study, fruit yield and quality, GHG emissions, as well as soil organic carbon and nitrogen fractions were examined in a hawthorn orchard, under the effects of live microalgae-based biofertilizer applied at three doses and two modes. Compared with conventional fertilization, microalgae improved hawthorn yield by 15.7%-29.6% with a maximal increment at medium dose by root application, and significantly increased soluble and reducing sugars contents at high dose. While microalgae did not increase GHG emissions except for nitrous oxide at high dose by root application, instead it significantly increased methane uptake by 1.5-2.3 times in root application. In addition, microalgae showed an increasing trend in soil organic carbon content, and significantly increased the contents of soil dissolved organic carbon and microbial biomass carbon, as well as soil ammonium nitrogen and dissolved organic nitrogen at medium dose with root application. Overall, the results indicated that the live microalgae could be used as a green biofertilizer for improving fruit yield without increasing GHG emissions intensity and the comprehensive greenhouse effect, in particular at medium dose with root application. We presume that if lowering chemical fertilizer rates, application of the live microalgae-based biofertilizer may help to reduce nitrous oxide emissions without compromising fruit yield and quality.
Asunto(s)
Crataegus , Fertilizantes , Frutas , Gases de Efecto Invernadero , Microalgas , Nitrógeno , Suelo , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Suelo/química , Nitrógeno/análisis , Nitrógeno/metabolismo , Crataegus/crecimiento & desarrollo , Carbono/análisis , Carbono/metabolismo , Biomasa , Metano/análisis , Metano/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismoRESUMEN
The investigation of lunar soil encompasses extensive periods, employs many improvement methods, and has generated several simulants. The improvement of lunar soil has recently garnered growing interest as an aspect of In-Situ Resource Utilization (ISRU) for regolith. It is crucial to clarify the challenges of utilizing lunar soil as a planting substrate to develop more effective techniques. This review presents a comprehensive analysis of research on improving lunar soil properties, highlights the disparities in mineral composition between real lunar soil (also called regolith) and simulated lunar soil, then details their deficiencies as planting substrates. Following an investigation of existing improvement methods, a dilemma of metalsãsalt precipitation and high pH caused by adding organic matter alone was noted, while the function of microbes (bacteria, algae, and lichens) in improvement processes was assessed. Finally, we present a perspective on future the lunar soil plantable research development based on the Bioregenerative Life Support System (BLSS). This review aims to promote the engineering application of lunar soil improvements and sustainable development. We hope that one day, regolith will enable plants to flourish on the Moon.
Asunto(s)
Luna , Suelo , Suelo/químicaRESUMEN
RATIONALE: Descending necrotizing mediastinitis (DNM) is a rare but serious complication of oral and cervical infections that is associated with high mortality because diagnosis can be difficult or delayed. Early diagnosis and accurate identification of the causative pathogen can significantly reduce mortality, and are critical for the management of these patients. PATIENT CONCERNS: A 56-year-old female was admitted with a sore throat and fever. The initial diagnosis was acute tonsillitis, but she was transferred to the intensive care unit after developing dyspnea. DIAGNOSES: Pleural effusion and mediastinal lesions were detected by computed tomography, and a diagnosis of DNM was confirmed by laboratory tests. INTERVENTIONS: Initial treatment consisting of ceftriaxone and vancomycin with chest tube drainage were not effective. Thoracic surgery was performed to completely remove the "moss" tissue, blood clots, and pus. Next-generation sequencing was then performed, and the anti-infective treatment was changed to imipenem and linezolid based on these results. OUTCOMES: Eventually, the patient's symptoms were controlled, all vital signs were stable, and she was successfully transferred out of the intensive care unit. LESSONS: Next-generation sequencing is a rapid and accurate method for identification of pathogens that can provide a basis for early treatment of DNM, thereby improving patient prognosis and reducing mortality.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mediastinitis , Tonsilitis , Humanos , Femenino , Mediastinitis/diagnóstico , Mediastinitis/microbiología , Persona de Mediana Edad , Tonsilitis/complicaciones , Tonsilitis/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Antibacterianos/uso terapéutico , Necrosis , Tomografía Computarizada por Rayos X , Enfermedad AgudaRESUMEN
Continuous cropping obstacles poses significant challenges for melon cultivation, with autotoxicity being a primary inducer. Suberization of cells or tissues is a vital mechanism for plant stress response. Our study aimed to elucidate the potential mechanism of root suberization in melon's response to autotoxicity. Cinnamic acid was used to simulate autotoxicity. Results showed that autotoxicity worsened the root morphology and activity of seedlings. Significant reductions were observed in root length, diameter, surface area, volume and fork number compared to the control in the later stage of treatment, with a decrease ranging from 20% to 50%. The decrease in root activity ranged from 16.74% to 29.31%. Root suberization intensified, and peripheral suberin deposition became more prominent. Autotoxicity inhibited phenylalanineammonia-lyase activity, the decrease was 50% at 16 h. The effect of autotoxicity on cinnamylalcohol dehydrogenase and cinnamate 4-hydroxylase activity showed an initial increase followed by inhibition, resulting in reductions of 34.23% and 44.84% at 24 h, respectively. The peroxidase activity only significantly increased at 24 h, with an increase of 372%. Sixty-three differentially expressed genes (DEGs) associated with root suberization were identified, with KCS, HCT, and CYP family showing the highest gene abundance. GO annotated DEGs into nine categories, mainly related to binding and catalytic activity. DEGs were enriched in 27 KEGG pathways, particularly those involved in keratin, corkene, and wax biosynthesis. Seven proteins, including C4H, were centrally positioned within the protein interaction network. These findings provide insights for improving stress resistance in melons and breeding stress-tolerant varieties.
Asunto(s)
Cucurbitaceae , Raíces de Plantas , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Cinamatos/farmacología , Cinamatos/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo , Transcinamato 4-Monooxigenasa/genética , Plantones/efectos de los fármacos , Plantones/genética , Oxidorreductasas de AlcoholRESUMEN
Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg ⢠L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.
Asunto(s)
Cobre , Germinación , Perilla , Cloruro de Polivinilo , Semillas , Germinación/efectos de los fármacos , Cobre/toxicidad , Semillas/efectos de los fármacos , Perilla/efectos de los fármacos , Microplásticos/toxicidad , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Contaminantes del Suelo/toxicidadRESUMEN
There is a growing demand for the development of epoxy resin modified with biomaterials, aiming to achieve high toughness. Herein, chitosan crosslinked epoxy resin (CE) was synthesized by diisocyanate as a bridge. With 4,4'-diamino-diphenylmethane (DDM) as the curing agent, thanks to the unique cross-linking structure of the CE resin and the presence of carbamate groups, the cured CE/DDM exhibited superior properties compared to commercially available epoxy resin (E51). The tensile strength of the cured CE-3/DDM reached 90.17 MPa, the elongation at break was 11.2 %, and the critical stress intensity factor (KIC) measured 1.78 MPa m1/2. These values were 21.4 %, 151.6 %, and 81.6 % higher than those of the cured E51/DDM, respectively. It is worth noting that the addition of biomass material chitosan did not reduce the thermal stability of the resin. Additionally, the CE coatings on the metal substrate exhibited exceptional corrosion resistance, as evidenced by higher impedance values in electrochemical impedance spectroscopy (EIS) and polarization voltages in the Tafel curve compared to those of the E51 coating. This study opens up a novel approach to modifying epoxy resin with biomass materials with high toughness and corrosion resistance, without sacrificing other performance.
Asunto(s)
Quitosano , Reactivos de Enlaces Cruzados , Resinas Epoxi , Resinas Epoxi/química , Quitosano/química , Corrosión , Reactivos de Enlaces Cruzados/química , Ensayo de Materiales , Resistencia a la Tracción , Fenómenos MecánicosRESUMEN
Pumpkin polysaccharide (PPe-H) can perform physiological functions through its antioxidative and hypoglycemic effects; however, the mechanisms through which PPe-H regulates abnormal glucose and lipid metabolism caused by oxidative stress injury remain unclear. In the present study, streptozotocin was used to generate an acute diabetic mouse model, and the effects of PPe-H on glucose and lipid metabolism impaired by oxidative stress in diabetic mice were studied. PPe-H significantly reduced blood glucose levels and enhanced the oral glucose tolerance of diabetic mice under stress injury (pâ¯<â¯0.05). The analysis of liver antioxidant enzymes showed that PPe-H significantly enhanced the activities of SOD and CAT (pâ¯<â¯0.05), increased the GSH level, and decreased the level of MDA (pâ¯<â¯0.05). Transcriptomic and metabolomic analyses of the liver tissues of mice revealed characteristic differences in the genetic and metabolic levels of the samples, which showed that PPe-H treatment may play a positive role in regulating the metabolism of methionine, cysteine, glycerol phospholipid, and linoleic acid. These results indicated that PPe-H alleviated the symptoms of hyperglycemia by regulating metabolites related to oxidative stress and glycolipid metabolism in diabetic mice.
Asunto(s)
Cucurbita , Diabetes Mellitus Experimental , Metabolismo de los Lípidos , Estrés Oxidativo , Polisacáridos , Animales , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Cucurbita/química , Glucemia/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Antioxidantes/farmacología , Glucosa/metabolismo , MetabolómicaRESUMEN
A novel low-alloy ultrahigh-strength steel featuring excellent mechanical properties and comprising a nanolath structure was fabricated in this work using a quenching-partitioning-tempering (Q-P-T) process. The Q-P-T process comprised direct quenching and an isothermal bainitic transformation for partitioning after thermo-mechanical control processing (online Q&P) and offline tempering (reheating and tempering). The ultrafine nanolath martensite/bainite mixed structure, combined with residual austenite in the form of a thin film between the nanolaths, was formed, thereby conferring excellent mechanical properties to the steel structures. After the Q-P-T process, the yield and tensile strengths of the steels reached 1450 MPa and 1726 MPa, respectively. Furthermore, the Brinell hardness and elongation rate were 543 HB and 11.5%, respectively, with an average impact energy of 20 J at room temperature.
RESUMEN
Spinal cord injury (SCI) results in neurological deficits below the level of injury, causing motor dysfunction and various severe multisystem complications. Rehabilitative training plays a crucial role in the recovery of individuals with SCI, and exoskeleton serves as an emerging and promising tool for rehabilitation, especially in promoting neuroplasticity and alleviating SCI-related complications. This article reviews the classifications and research progresses of medical exoskeletons designed for SCI patients and describes their performances in practical application separately. Meanwhile, we discuss their mechanisms for enhancing neuroplasticity and functional remodeling, as well as their palliative impacts on secondary complications. The potential trends in exoskeleton design are raised according to current progress and requirements on SCI rehabilitation.
Asunto(s)
Dispositivo Exoesqueleto , Plasticidad Neuronal , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/fisiopatología , Plasticidad Neuronal/fisiología , Rehabilitación Neurológica/métodos , Rehabilitación Neurológica/instrumentación , Recuperación de la Función/fisiologíaRESUMEN
Whisker-shaped nickel phyllosilicate (NiPS) was synthesized using rod-like nickel-based metal-organic frameworks as the hard templates, and highly efficient flame retardant and wear resistant EP composites were prepared by synergizing with microencapsulated ammonium polyphosphate (MFAPP). The research results indicated that at a total addition amount of 8 wt% and a mass ratio of 2 : 5 for NiPS to MFAPP, the limiting oxygen index of the EP composite was 28.2%, which achieved the V-0 rating in the UL-94 standard. Meanwhile, the peak of heat release rate and total heat release was reduced by 33.9% and 22%, respectively, compared with pure EP. The synergistic system of NiPS and MFAPP promoted the formation of high-quality char layer, preventing the diffusion of heat, oxygen, and combustible gases effectively during combustion of the EP composite. Dry friction test showed that the wear rate of the EP composite was 0.847 × 10-5 mm3 N-1 m-1, which was 87.9% lower than pure EP, indicating a significant improvement in wear resistance. This study provided a promising method for the preparation of high performance epoxy composites with excellent flame retardancy and wear resistance.
RESUMEN
BACKGROUND: As an extension of electron tomography (ET), serial section electron tomography (serial section ET) aims to align the tomographic images of multiple thick tissue sections together, to break through the volume limitation of the single section and preserve the sub-nanoscale voxel size. It could be applied to reconstruct the intact synapse, which expands about one micrometer and contains nanoscale vesicles. However, there are several drawbacks of the existing serial section ET methods. First, locating and imaging regions of interest (ROIs) in serial sections during the shooting process is time-consuming. Second, the alignment of ET volumes is difficult due to the missing information caused by section cutting and imaging. Here we report a workflow to simplify the acquisition of ROIs in serial sections, automatically align the volume of serial section ET, and semi-automatically reconstruct the target synaptic structure. RESULTS: We propose an intelligent workflow to reconstruct the intact synapse with sub-nanometer voxel size. Our workflow includes rapid localization of ROIs in serial sections, automatic alignment, restoration, assembly of serial ET volumes, and semi-automatic target structure segmentation. For the localization and acquisition of ROIs in serial sections, we use affine transformations to calculate their approximate position based on their relative location in orderly placed sections. For the alignment of consecutive ET volumes with significantly distinct appearances, we use multi-scale image feature matching and the elastic with belief propagation (BP-Elastic) algorithm to align them from coarse to fine. For the restoration of the missing information in ET, we first estimate the number of lost images based on the pixel changes of adjacent volumes after alignment. Then, we present a missing information generation network that is appropriate for small-sample of ET volume using pre-training interpolation network and distillation learning. And we use it to generate the missing information to achieve the whole volume reconstruction. For the reconstruction of synaptic ultrastructures, we use a 3D neural network to obtain them quickly. In summary, our workflow can quickly locate and acquire ROIs in serial sections, automatically align, restore, assemble serial sections, and obtain the complete segmentation result of the target structure with minimal manual manipulation. Multiple intact synapses in wild-type rat were reconstructed at a voxel size of 0.664 nm/voxel to demonstrate the effectiveness of our workflow. CONCLUSIONS: Our workflow contributes to obtaining intact synaptic structures at the sub-nanometer scale through serial section ET, which contains rapid ROI locating, automatic alignment, volume reconstruction, and semi-automatic synapse reconstruction. We have open-sourced the relevant code in our workflow, so it is easy to apply it to other labs and obtain complete 3D ultrastructures which size is similar to intact synapses with sub-nanometer voxel size.
Asunto(s)
Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Animales , Ratas , Flujo de Trabajo , Algoritmos , SinapsisRESUMEN
The rapid development of livestock and poultry farming in China has resulted in an increasing threat of water pollution. In particular, mitigating livestock-related pollutant discharges is a key issue for environmental sustainability, especially for inland surface water bodies. In order to ensure the effective control of pollution and the efficient utilization management of livestock manure, spatially explicit surveys of pollutant generation and discharge from the livestock sector must be performed. In the present study, we estimated the grid cell-level distributions in the generation and discharge of four typical pollutants (chemical oxygen demand, ammonium nitrogen, total nitrogen and total phosphorus) from the livestock sector across the country with a spatial resolution of 30 arc-seconds. The distributions were estimated using the most recent pollution source census data and multi-sourced ancillary materials by a dasymetric mapping approach. We further investigated the feasibility of the resource utilization of livestock manure by comparing manure-source nutrients with the carrying capacity of adjacent croplands. Our results show that low-intensive farming generated and discharged the majority of livestock farming pollution, with other cattle and pigs breeding identified as the two major sources of pollution from the livestock sector. Southwest, Central and East China suffered the highly densified pollutants generation and discharges. Furthermore, cropland exceeding its carrying capacity was concentrated in these regions. Our findings provide additional insights into livestock and poultry farming in the context of relocation, strengthening regulation, transforming breeding operations, and rationalizing the resource use of manure, all of which are important measures for the sustainable development of both agriculture and the environment.
RESUMEN
ABSTRACT: Objective: The objective of this study was to provide an in-depth analysis of the advantages and potential research directions concerning the utilization of terlipressin (TP) in combination with norepinephrine (NE) for the management of septic shock. Methods: A systematic search was conducted across five major electronic databases, namely, PubMed, Cochrane, Embase, ScienceDirect, and MEDLINE, using the Boolean method. The search encompassed articles published until May 22, 2023. Randomized controlled trials investigating the efficacy of TP combined with NE in the treatment of patients with septic shock were considered for inclusion. Results: A total of seven trials met the inclusion criteria. The combination therapy of TP and NE exhibited potential benefits in the treatment of adult patients suffering from septic shock. Furthermore, the concurrent administration of TP with NE demonstrated improvements in cardiac output and central venous pressure. However, it is important to acknowledge the presence of certain risks and potential adverse events, including an elevated risk of peripheral ischemia. Conclusions: The available evidence supports the notion that early combination therapy involving NE and TP holds promise in terms of reducing the required dosage of NE, enhancing renal perfusion, and improving microcirculation in patients diagnosed with septic shock.
Asunto(s)
Norepinefrina , Choque Séptico , Adulto , Humanos , Norepinefrina/uso terapéutico , Terlipresina/uso terapéutico , Choque Séptico/tratamiento farmacológico , Lipresina/uso terapéutico , Terapia Combinada , Vasoconstrictores/uso terapéuticoRESUMEN
The remote excitation and remote-controlling of the localized surface plasmon resonance (LSPR) in a heterotype and hollow gold nanosheet (HGNS) is studied using FDTD simulations. The heterotype HGNS contains an equilateral and hollow triangle in the center of a special hexagon, which forms a so-called hexagon-triangle (H-T) heterotype HGNS. If we focus the incident-exciting laser on one of the vertexes of the center triangle, the LSPR could be achieved among other remote vertexes of the outer hexagon. The LSPR wavelength and peak intensity depend sensitively on factors such as the polarization of the incident light, the size and symmetry of the H-T heterotype structure, etc. Several groups of the optimized parameters were screened out from numerous FDTD calculations, which help to further obtain some significant polar plots of the polarization-dependent LSPR peak intensity with two-petal, four-petal or six-petal patterns. Remarkably, based on these polar plots, the on-off switching of the LSPR coupled among four HGNS hotspots could be remote-controlled simply via only one polarized light, which shows promise for its potential application in remote-controllable surface-enhanced Raman scattering (SERS), optical interconnects and multi-channel waveguide switches.
RESUMEN
The wide application of agricultural plastics leads to microplastic (MP) accumulation in the soil and inevitably result in MP pollution. Melon is an economically important horticultural crop that is widely cultivated with plastic film mulching. However, the impact of MP pollution on plant growth remains largely unclear. Here we reported the morphological, physiological, biochemical responses and transcriptome re-programing of melon responses to MP on seed germination and seedling growth. Polyvinyl chloride particles were added to potting mix to simulate MP exposure environment (MEE). The results showed that low and medium concentrations (1-4 g kg-1) of MEE had a significant adverse effect on seed germination and seedling growth. In both cases, the germination potential was decreased, young root forks increased, and tips decreased; and the dry weight of seedlings, the total length, surface area, forks and tips of root were also decreased. However, the root activity was increased. The concentration of MEE to give the best parameters was at 2 g kg-1. Catalase enzymatic activity and reactive oxygen species (ROS) in roots were decreased continuously with increased MEE concentrations. The peak values of peroxidase activity, O2.- content and generation rate, ROS enrichment and malondialdehyde content all reached the highest at 2 g kg-1. MEE also increased the proline content and decreased the contents of ascorbic acid, soluble sugar and soluble protein in these seedlings. Medium and high concentrations of MEE (4-8 g kg-1) also increased the chlorophyll b content. Low concentrations MEE (1-2 g kg-1) inhibited actual photochemical efficiency of photosystem II and photochemical quenching, two key chlorophyll fluorescence parameters. Transcriptome analysis showed that the differentially expressed genes caused by the MEE were mainly belonged to defense response, signal transduction, hormone metabolism, plant-pathogen interaction, and phenylpropanoid biosynthesis. The results of this study will help to understand the ecotoxicological effects of MEE on melons and provide data for ecological risk assessment of Cucurbitaceae vegetable cultivation.
Asunto(s)
Cucumis melo , Cucurbitaceae , Plantones/metabolismo , Germinación , Cucumis melo/genética , Cucumis melo/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacología , Plásticos/metabolismo , Plásticos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cucurbitaceae/metabolismo , Semillas , Perfilación de la Expresión GénicaRESUMEN
This article presents a performance investigation of a fault detection approach for bearings using different chaotic features with fractional order, where the five different chaotic features and three combinations are clearly described, and the detection achievement is organized. In the architecture of the method, a fractional order chaotic system is first applied to produce a chaotic map of the original vibration signal in the chaotic domain, where small changes in the signal with different bearing statuses might be present; then, a 3D feature map can be obtained. Second, five different features, combination methods, and corresponding extraction functions are introduced. In the third action, the correlation functions of extension theory used to construct the classical domain and joint fields are applied to further define the ranges belonging to different bearing statuses. Finally, testing data are fed into the detection system to verify the performance. The experimental results show that the proposed different chaotic features perform well in the detection of bearings with 7 and 21 mil diameters, and an average accuracy rate of 94.4% was achieved in all cases.
RESUMEN
Pasteurella multocida (Pm) is one of the major pathogens of bovine respiratory disease (BRD), which can develop drug resistance to many of the commonly used antibiotics. Our earlier research group found that with clinical use of enrofloxacin, Pm was more likely to develop drug resistance to enrofloxacin. In order to better understand the resistance mechanism of Pm to enrofloxacin, we isolated PmS and PmR strains with the same PFGE typing in vitro, and artificially induced PmR to obtain the highly resistant phenotype, PmHR. Then transcriptome sequencing of clinically isolated sensitive strains, resistant and highly drug-resistant strains, treated with enrofloxacin at sub-inhibitory concentrations, were performed. The satP gene, of which the expression changed significantly with the increase in drug resistance, was screened. In order to further confirm the function of this gene, we constructed a satP deletion (ΔPm) strain using suicide vector plasmid pRE112, and constructed the C-Pm strain using pBBR1-MCS, and further analyzed the function of the satP gene. Through a continuously induced resistance test, it was found that the resistance rate of ΔPm was obviously lower than that of Pm in vitro. MDK99, agar diffusion and mutation frequency experiments showed significantly lower tolerance of ΔPm than the wild-type strains. The pathogenicity of ΔPm and Pm was measured by an acute pathogenicity test in mice, and it was found that the pathogenicity of ΔPm was reduced by about 400 times. Therefore, this study found that the satP gene was related to the tolerance and pathogenicity of Pm, and may be used as a target of enrofloxacin synergistic effect.
RESUMEN
Enrichment plants were screened from six forage grasses in this study to establish a complete combined forage grass-microbial remediation system of strontium-contaminated soil, and microbial groups were added to the screened dominant forage grasses. The occurrence states of strontium in forage grasses were explored by the BCR sequential extraction method. The results showed that the annual removal rate of Sudan grass (Sorghum sudanense (Piper) Stapf.) reached 23.05% in soil with a strontium concentration of 500 mg·kg-1. Three dominant microbial groups: E, G and H, have shown good facilitation effects in co-remediation with Sudan grass and Gaodan grass (Sorghum bicolor × sudanense), respectively. When compared to the control, the strontium accumulation of forage grasses in kg of soil with microbial groups was increased by 0.5-4 fold. The optimal forage grass-microbial combination can theoretically repair contaminated soil in three years. The microbial group E was found to promote the transfer of the exchangeable state and the reducible state of strontium to the overground part of the forage grass. Metagenomic sequencing results showed that the addition of microbial groups increased Bacillus spp. in rhizosphere soil, enhanced the disease resistance and tolerance of forage grasses, and improved the remediation ability of forage grass-microbial combinations.
Asunto(s)
Contaminantes del Suelo , Estroncio , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Plantas , SueloRESUMEN
Objective: The present study aimed to evaluate the relationship between all-cause mortality and the neutrophil percentage-to-albumin ratio (NPAR) in patients with atrial fibrillation (AF). Methods: We obtained clinical information from patients with AF from the Medical Information Mart for Intensive Care-IV version 2.0 (MIMIC-IV) database and the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (WMU). The clinical endpoints were all-cause death measured at 30-day, 90-day, and one-year intervals. For endpoints associated with the NPAR, logistic regression models were used to calculate odds ratios (OR) with 95% confidence intervals (CI). Receiver operating characteristic (ROC) curves and area under the curve (AUC) were developed to compare the ability of different inflammatory biomarkers to predict 90-day mortality in patients with AF. Results: Higher NPAR was associated with a higher risk of 30-day (OR 2.08, 95% CI 1.58-2.75), 90-day (OR 2.07, 95% CI 1.61-2.67), and one-year mortality (OR 1.60, 95% CI 1.26-2.04) in patients with AF in 2813 patients from MIMIC-IV. The predictive performance of NPAR (AUC = 0.609) for 90-day mortality was better than that of neutrophil-to-lymphocyte ratio (NLR) (AUC = 0.565, P < 0.001), and platelet-to-lymphocyte ratio (PLR) (AUC = 0.528, P < 0.001). When NPAR and sequential organ failure assessment (SOFA) were combined, the AUC increased from 0.609 to 0.674 (P < 0.001). Higher NPAR was associated with a higher risk of 30-day mortality (OR 2.54, 95% CI 1.02-6.30) and 90-day mortality (OR 2.76, 95% CI 1.09-7.01) in 283 patients from WMU. Conclusion: An increased 30-day, 90-day, and one-year mortality risk among patients with AF were linked to a higher NPAR in MIMIC-IV. NPAR was thought to be a good predictor of 90-day all-cause mortality. Higher NPAR was associated with a higher risk of 30-day and 90-day mortality in WMU.