Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739003

RESUMEN

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Asunto(s)
Aurora Quinasa A , Proliferación Celular , Cisplatino , Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Cisplatino/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Sinergismo Farmacológico , Alcaloides Indólicos/farmacología
2.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669875

RESUMEN

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Asunto(s)
Adenosina , Carcinogénesis , Contaminantes Ambientales , Adenosina/análogos & derivados , Carcinogénesis/inducido químicamente , Contaminantes Ambientales/toxicidad , Humanos , Metilación , Animales , ARN/genética , Metilación de ARN
3.
Front Cardiovasc Med ; 11: 1327497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525192

RESUMEN

Background: Pre-eclampsia and eclampsia are among the major threats to pregnant women and fetuses, but they can be mitigated by prevention and early screening. Existing observational research presents conflicting evidence regarding the causal effects of coronavirus disease 2019 (COVID-19) on pre-eclampsia risk. Through Mendelian randomization (MR), this study aims to investigate the causal effect of three COVID-19 severity phenotypes on the risk of pre-eclampsia and eclampsia to provide more rigorous evidence. Methods: Two-sample MR was utilized to examine causal effects. Summary-level data from genome-wide association studies (GWAS) of individuals of European ancestry were acquired from the GWAS catalog and FinnGen databases. Single-nucleotide polymorphisms associated with COVID-19 traits at p < 5 × -8 were obtained and pruned for linkage disequilibrium to generate instrumental variables for COVID-19. Inverse variance weighted estimates were used as the primary MR results, with weighted median and MR-Egger as auxiliary analyses. The robustness of the MR findings was also evaluated through sensitivity analyses. Bonferroni correction was applied to primary results, with a p < 0.0083 considered significant evidence and a p within 0.083-0.05 considered suggestive evidence. Results: Critical ill COVID-19 [defined as hospitalization for COVID-19 with either a death outcome or respiratory support, OR (95% CI): 1.17 (1.03-1.33), p = 0.020] and hospitalized COVID-19 [defined as hospitalization for COVID-19, OR (95% CI): 1.10 (1.01-1.19), p = 0.026] demonstrated suggestive causal effects on pre-eclampsia, while general severe acute respiratory syndrome coronavirus 2 infection did not exhibit a significant causal effect on pre-eclampsia. None of the three COVID-19 severity phenotypes exhibited a significant causal effect on eclampsia. Conclusions: Our investigation demonstrates a suggestive causal effect of genetic susceptibility to critical ill COVID-19 and hospitalized COVID-19 on pre-eclampsia. The COVID-19 severity exhibited a suggestive positive dose-response relationship with the risk of pre-eclampsia. Augmented attention should be paid to pregnant women hospitalized for COVID-19, especially those needing respiratory support.

4.
Transl Oncol ; 44: 101942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555741

RESUMEN

Cisplatin resistance plays a significant role in the dismal prognosis and progression of muscle-invasive bladder cancer (MIBC). However, the strategies to predict prognosis and cisplatin resistance are inefficient, and it remains unclear whether cisplatin resistance is associated with tumor immunity. In this study, we integrated the transcriptional data from cisplatin-resistant cell lines and a TCGA-MIBC cohort to establish cisplatin-resistance-related cluster classification and a cisplatin-resistance-related gene risk score (CRRGRS). Kaplan-Meier survival curves showed that compared with those in low CRRGRS group, MIBC patients belonging to high CRRGRS group had worse prognosis in TCGA-MIBC cohort and external GEO cohorts. Meanwhile, CRRGRS was able to help forecast chemotherapy and immunotherapy response of MIBC patients in the TGCA cohort and IMvigor210 cohort. Moreover, compared with the low CRRGRS group, the high CRRGS group possessed a relatively immunosuppressive "cold tumor" phenotype with a higher tumor immune dysfunction and exclusion (TIDE) score, ESTIMATE score, stromal score and immune score and a lower immunophenoscore (IPS) score. The upregulated expression levels of immune checkpoint genes, including PD-1, PD-L1 and CTLA4, in the high CRRGRS group also further indicated that a relative immunosuppressive tumor microenvironment may exist in MIBC patients belonging to high CRRGRS group. In addition, we integrated CRRGRS and clinical characteristics with prognostic value to develop a nomogram, which could help forecast overall survival of MIBC patients. Furthermore, DIAPH3 was identified as a regulator of proliferation and cisplatin resistance in MIBC. The expression of DIAPH3 was increased in cisplatin-resistant cell lines and chemotherapy-unsensitive people. Further mechanism exploration revealed that DIAPH3 facilitated tumor proliferation and cisplatin resistance by regulating the NF-kB and epithelial-mesenchymal transition (EMT) pathways. In conclusion, the comprehensive investigations of CRRGRS increased the understanding of cisplatin resistance and provided promising insights to restrain tumor growth and overcome chemoresistance by targeting DIAPH3.

5.
Signal Transduct Target Ther ; 9(1): 58, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438346

RESUMEN

Temozolomide (TMZ) represents a standard-of-care chemotherapeutic agent in glioblastoma (GBM). However, the development of drug resistance constitutes a significant hurdle in the treatment of malignant glioma. Although specific innovative approaches, such as immunotherapy, have shown favorable clinical outcomes, the inherent invasiveness of most gliomas continues to make them challenging to treat. Consequently, there is an urgent need to identify effective therapeutic targets for gliomas to overcome chemoresistance and facilitate drug development. This investigation used mass spectrometry to examine the proteomic profiles of six pairs of GBM patients who underwent standard-of-care treatment and surgery for both primary and recurrent tumors. A total of 648 proteins exhibiting significant differential expression were identified. Gene Set Enrichment Analysis (GSEA) unveiled notable alterations in pathways related to METABOLISM_OF_LIPIDS and BIOLOGICAL_OXIDATIONS between the primary and recurrent groups. Validation through glioma tissue arrays and the Xiangya cohort confirmed substantial upregulation of inositol 1,4,5-triphosphate (IP3) kinase B (ITPKB) in the recurrence group, correlating with poor survival in glioma patients. In TMZ-resistant cells, the depletion of ITPKB led to an increase in reactive oxygen species (ROS) related to NADPH oxidase (NOX) activity and restored cell sensitivity to TMZ. Mechanistically, the decreased phosphorylation of the E3 ligase Trim25 at the S100 position in recurrent GBM samples accounted for the weakened ITPKB ubiquitination. This, in turn, elevated ITPKB stability and impaired ROS production. Furthermore, ITPKB depletion or the ITPKB inhibitor GNF362 effectively overcome TMZ chemoresistance in a glioma xenograft mouse model. These findings reveal a novel mechanism underlying TMZ resistance and propose ITPKB as a promising therapeutic target for TMZ-resistant GBM.


Asunto(s)
Glioblastoma , Glioma , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Homeostasis , Proteómica , Especies Reactivas de Oxígeno , Temozolomida/farmacología , Ubiquitina-Proteína Ligasas
6.
Front Oncol ; 14: 1301327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444673

RESUMEN

Background: Notwithstanding the acknowledged interplay between atrial fibrillation (AF) and the emergence of digestive system neoplasms, the intricacies of this relationship remain ambiguous. By capitalizing univariable Mendelian Randomization (MR) complemented by a mediated MR tactic, our pursuit was to elucidate the causative roles of AF in precipitating digestive system malignancies and potential intermediary pathways. Method: This research endeavor seeks to scrutinize the causal clinical implications of whether genetic predispositions to AF correlate with an increased risk of digestive system malignancies, employing MR analytical techniques. Utilizing a dataset amalgamated from six studies related to AF, encompassing over 1,000,000 subjects, we performed univariable MR assessments, employing the random-effects inverse-variance weighted (IVW) methodology as our principal analytical paradigm. Subsequently, a mediated MR framework was employed to probe the potential mediating influence of AF on the nexus between hypertension (HT), heart failure (HF), ischemic stroke (IS), coronary artery disease (CAD), and digestive system neoplasms. Result: The univariable MR evaluation unveiled a notable causal nexus between the genetic inclination toward AF and the genetic susceptibility to colon, esophageal, and small intestine malignancies. The mediated MR scrutiny ascertained that the genetic inclination for AF amplifies the risk profile for colon cancer via IS pathways and partially explains the susceptibility to esophageal and small intestine tumors through the HF pathway. Conclusion: Our investigative endeavor has highlighted a definitive causative association between genetic inclination to AF and specific digestive system neoplasms, spotlighting IS and HF as instrumental mediators. Such revelations furnish pivotal perspectives on the complex genetic interconnections between cardiovascular anomalies and certain digestive tract tumors, emphasizing prospective therapeutic and diagnostic worthy of pursuit.

7.
Chem Biol Interact ; 393: 110958, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38493911

RESUMEN

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, such as Olaparib, have been pivotal in treating BRCA-deficient ovarian cancer. However, their efficacy is limited in over 40% of BRCA-deficient patients, with acquired resistance posing new clinical challenges. To address this, we employed bioinformatics methods to identify key genes impacting Olaparib sensitivity in ovarian cancer. Through comprehensive analysis of public databases including GEO, CPTAC, Kaplan Meier Plotter, and CCLE, we identified CRABP2 as significantly upregulated at both mRNA and protein levels in ovarian cancer, correlating with poor prognosis and decreased Olaparib sensitivity. Using colony formation and CCK-8 assays, we confirmed that CRABP2 knockdown in OVCAR3 and TOV112D cells enhanced sensitivity to Olaparib. Additionally, 4D label-free quantitative proteomics analysis, GSEA, and GO/KEGG analysis revealed CRABP2's involvement in regulating oxidation signals. Flow cytometry, colony formation assays, and western blotting demonstrated that CRABP2 knockdown promoted ROS production by activating Caspase-8, thereby augmenting Olaparib sensitivity and inhibiting ovarian cancer cell proliferation. Moreover, in xenograft models, CRABP2 knockdown significantly suppressed tumorigenesis and enhanced Olaparib sensitivity, with the effect being reversed upon Caspase-8 knockdown. These findings suggest that CRABP2 may modulate Olaparib sensitivity in ovarian cancer through the Caspase-8/ROS axis, highlighting its potential as a target for Olaparib sensitization.


Asunto(s)
Neoplasias Ováricas , Ftalazinas , Piperazinas , Femenino , Humanos , Apoptosis , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
J Nat Prod ; 87(4): 837-848, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38417401

RESUMEN

Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.


Asunto(s)
Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Proteínas Musculares , Neoplasias Ováricas , Ftalazinas , Piperazinas , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Alcaloides Indólicos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Quinolinas/farmacología
9.
Front Psychol ; 15: 1265648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379627

RESUMEN

Objectives: To understand the attitudes and health behaviors of middle-aged and older adults in China after receiving elevated results of tumor markers (TMs) test in the annual health examinations (AHEs) and explore the influencing factors. Methods: A three-section online questionnaire survey was conducted from March 1 to April 30, 2020 in Hangzhou, China, to people who were aged 45 and older and had at least one elevated result of TMs test. Clinical information was collected from the online survey and medical records. Descriptive statistics were carried out followed by regression analyses. Results: Of 380 participants, 76.1% were unwilling to quit the TMs test in AHEs, whereas 75.3% would take the doctor's advice and quit unnecessary TMs test; 67.4% felt stressed about their TMs. Among participants with elevated TMs, 76.8% changed lifestyle to keep healthy, 74.2% sought health information, 58.9% requested a TMs retest, and 50.3% did further tests to confirm a diagnosis. Family history of cancer was associated with lifestyle changing; education level, area of residence and health insurance were associated with health information seeking; comorbidity were associated with retests and sequential confirming tests. Conclusion: The application of the TMs test in AHEs among Chinese people may lead to positive and negative behavioral consequences and psychological distress. Doctors have a significant impact on patients' health behaviors. Accurate indications and adequate communication with patients before and after the TMs test are in great need.

10.
Neural Netw ; 172: 106104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219681

RESUMEN

Neural Architecture Search (NAS) methods are widely employed to address the time-consuming and costly challenges associated with manual operation and design of deep convolutional neural networks (DCNNs). Nonetheless, prevailing methods still encounter several pressing obstacles, including limited network architecture design, excessively lengthy search periods, and insufficient utilization of the search space. In light of these concerns, this study proposes an optimization strategy for residual networks that leverages an enhanced Particle swarm optimization algorithm. Primarily, low-complexity residual architecture block is employed as the foundational unit for architecture exploration, facilitating a more diverse investigation into network architectures while minimizing parameters. Additionally, we employ a depth initialization strategy to confine the search space within a reasonable range, thereby mitigating unnecessary particle exploration. Lastly, we present a novel approach for computing particle differences and updating velocity mechanisms to enhance the exploration of updated trajectories. This method significantly contributes to the improved utilization of the search space and the augmentation of particle diversity. Moreover, we constructed a crime-dataset comprising 13 classes to assess the effectiveness of the proposed algorithm. Experimental results demonstrate that our algorithm can design lightweight networks with superior classification performance on both benchmark datasets and the crime-dataset.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Benchmarking
11.
Biomark Res ; 12(1): 2, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185685

RESUMEN

The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.

12.
Sci Total Environ ; 912: 168308, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37977403

RESUMEN

Recent studies have discovered that tiny particles of microplastics (MPs) at the nano-scale level can enter the body of organisms from the environment, potentially causing metabolic ailments. However, further investigation is required to understand the alterations in the immune microenvironment associated with non-alcoholic fatty liver disease (NAFLD) occurrence following exposure to MPs. Experiments were performed using mice, which were given a normal chow or high-fat diet (NCD or HFD, respectively) plus free drinking of sterile water with or without MPs, respectively. Employing an impartial technique known as unbiased single-cell RNA-sequencing (scRNA-seq), the cellular (single-cell) pathology landscape of NAFLD and related changes in the identified immune cell populations induced following MPs plus HFD treatment were assessed. The results showed that mice in the HFD groups had remarkably greater NAFLD activity scores than those from the NCD groups. Moreover, administration of MPs plus HFD further worsened the histopathological changes in the mice's liver, leading to hepatic steatosis, inflammatory cell infiltrations and ballooning degeneration. Following the construction of a sing-cell resolution transcriptomic atlas of 43,480 cells in the mice's livers of the indicated groups, clear cellular heterogeneity and potential cell-to-cell cross-talk could be observed. Specifically, we observed that MPs exacerbated the pro-inflammatory response and influenced the stemness of hepatocytes during HFD feeding. Importantly, treatment with MPs significantly increase the infiltration of the infiltrating liver-protecting Vsig4+ macrophages in the liver of the NAFLD mouse model while remarkably decreasing the angiogenic S100A6+ macrophage subpopulation. Furthermore, mice treated with MPs plus HFD exhibited significantly increased recruitment of CD4+ cells and heightened exhaustion of CD8+ T cells than those from the control group, characteristics typically associated with the dysregulation of immune homeostasis and severe inflammatory damage. Overall, this study offers valuable perspectives into comprehending the potential underlying cellular mechanisms and regulatory aspects of the microenvironment regarding MPs in the development of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Enfermedades no Transmisibles , Ratones , Animales , Microplásticos/metabolismo , Plásticos/metabolismo , Análisis de Expresión Génica de una Sola Célula , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
13.
Adv Mater ; 36(19): e2311312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145390

RESUMEN

Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.

14.
Front Immunol ; 14: 1273524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077349

RESUMEN

Atrial fibrillation (AF) is a common clinical arrhythmia whose pathogenesis has not been fully elucidated, and the inflammatory response plays an important role in the development of AF. The inflammasome is an important component of innate immunity and is involved in a variety of pathophysiologic processes. The NLRP3 inflammasome is by far the best studied and validated inflammasome that recognizes multiple pathogens through pattern recognition receptors of innate immunity and mediates inflammatory responses through activation of Caspase-1. Several studies have shown that NLRP3 inflammasome activation contributes to the onset and development of AF. Ecological dysregulation of the gut microbiota has been associated with the development of AF, and some evidence suggests that gut microbiota components, functional byproducts, or metabolites may induce or exacerbate the development of AF by directly or indirectly modulating the NLRP3 inflammasome. In this review, we report on the interconnection of NLRP3 inflammasomes and gut microbiota and whether this association is related to the onset and persistence of AF. We discuss the potential value of pharmacological and dietary induction in the management of AF in the context of the association between the NLRP3 inflammasome and gut microbiota. It is hoped that this review will lead to new therapeutic targets for the future management of AF.


Asunto(s)
Fibrilación Atrial , Microbioma Gastrointestinal , Humanos , Fibrilación Atrial/etiología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/fisiología
15.
Mol Biol Rep ; 51(1): 16, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087057

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) accounts for the majority (80%-90%) of renal cell carcinoma (RCC) patients at the time of diagnosis, and approximately 15% of ccRCC patients will develop distant metastasis or recurrence during their lifetime. Increasing number of studies have revealed that the aberrant DNA methylations is closely correlated with the tumorigenesis in ccRCC. RESULTS: In this study, we utilized a LASSO (least absolute shrinkage and selection operator) model to identify a combination of 13 probes-based DNA methylation signature that associated with the progression-free survival (PFS) of ccRCC patients. First, differentially methylated regions (CpGs) related to PFS and phenotypes were identified. Next, prognostic DNA methylation probes were selected from the differentially methylated probes (DMPs) and calculated risk scores to stratify patients with ccRCC. The performance of this signature was validated in an independent testing set using various analyses, including Kaplan-Meier analysis for PFS and receiver operating characteristic (ROC) curve analysis. Based on our 13-DNA methylation probes signature, ccRCC patients were successfully stratified into high- and low-risk groups. Combining DNA methylation signature with clinical variables such as T stage, M stage and tumor grade could further improve the accuracy of prediction. Moreover, we highlight two molecular biomarkers (RCC1 and GDF6) corresponding to our probes. Invitro experiments showed that knockdown of RCC1 or GDF6 in ccRCC cell lines reduced cell proliferation, which indicated that both biomarkers are associated with tumorigenesis. CONCLUSIONS: The 13-probes-based DNA methylation signature has the potential to serve as an independent tool for survival outcome improvement and treatment strategy selection for ccRCC patients. In addition, our findings suggest that RCC1 and GDF6 may serve as promising markers for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Metilación de ADN/genética , Neoplasias Renales/metabolismo , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular/genética , Carcinogénesis/genética , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factor 6 de Diferenciación de Crecimiento
16.
Syst Rev ; 12(1): 229, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087315

RESUMEN

BACKGROUND: Practice-based research networks (PBRNs) have been recognized as essential laboratories and mechanisms for developing primary care research. This scoping review aims to examine and map the features and development trends of productivity, research categories, and methods in original primary care research conducted by global PBRNs between 1991 and 2023. METHODS: We have assembled an interdisciplinary team that will undertake this scoping review, following the framework developed by Arksey and O'Malley. Targeted literature includes original primary care research conducted by PBRNs, published from January 1, 1991, to December 31, 2023. An integrated search strategy will gather publications from 3 electronic databases (PubMed, Web of Science, and Embase), 16 major primary health care journals, and 364 relevant organizations. Two experienced researchers will independently screen the titles, keywords, and abstracts of all references and extract data regarding eight key elements. Disagreements between the reviewers will be resolved through group discussions, moderated by a third reviewer. Articles to be included will (1) be conducted in the primary care context, (2) be led by PBRNs, (3) provide a full report of original research, and (4) be published in a peer-reviewed journal between the aforementioned dates in any language. Exclusions encompass reviews, letters, commentaries, case reports, and conference papers. Final data will be displayed using tables and charts according to different conceptual categories. DISCUSSION: This scoping review is one of the initial attempts to delineate the development trends and features of primary care research conducted by PBRNs. This study will provide reference information for researchers in countries/regions that are building their research infrastructure and capacity in general practice, family medicine, and primary care. SYSTEMATIC REVIEW REGISTRATION: Registered in OSF on July 25, 2022 ( https://osf.io/zgv9c ).


Asunto(s)
Medicina Familiar y Comunitaria , Medicina General , Humanos , Bases de Datos Factuales , Lenguaje , Atención Primaria de Salud , Proyectos de Investigación , Literatura de Revisión como Asunto
17.
Front Oncol ; 13: 1150945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156111

RESUMEN

Background: This study aimed to evaluate the short-term outcomes of enhanced recovery after surgery (ERAS) protocol in perioperative robotic-assisted McKeown esophagectomy (RAME) among esophageal cancer patients. Methods: For this retrospective study, all patients who had undergone RAME with esophageal cancer using ERAS protocol and conventional management strategy at the surgery center of our hospital from February 2019 to March 2022 were performed for analysis. Results: A total of 211 patients were included. Compared to the conventional group, the ERAS group has shorter median operative time [207 (147.5-267.5) vs. 244 (183-305), P<0.001], time to first flatus (P<0.001), time to out-of-bed activity (P=0.045), and time to liquid diet (P<0.001). In addition, the ERAS group has lower postoperative pain scores (3.62 ± 0.87 vs. 4.54 ± 0.91), shorter duration of analgesia pump [2 (1-3) vs. 3 (2.5-5.5)], shorter postoperative hospital stay [(9 (6-47) vs. 11 (6-79)], shorter postoperative hospital stay within neoadjuvant treated patients [8 (7-43) vs. 13 (8-67], shorter postoperative ICU stay [1 (0-7) vs. 2 (0-15)], and less reoperation rate (7.6% vs. 16.8%). Furthermore, the overall complication rate was significantly lower in the ERAS group (26.1%) than in the conventional group (50.4%). Notably, the ERAS group had lower thoracic fluid drainage volume than the conventional group on postoperative 2-7 days (P<0.05). Conclusions: The application of ERAS protocol in esophageal cancer patients treated with RAME showed advantages of quick postoperative recovery in contrast to the conventional management strategy.

18.
Front Endocrinol (Lausanne) ; 14: 1290639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027182

RESUMEN

Background: Both benign prostatic hyperplasia (BPH) and sarcopenic obesity (SO) are common conditions among older adult/adults males. The prevalent lifestyle associated with SO is a significant risk factor for the development of BPH. Therefore, we investigated the causal relationship between SO factors and BPH. Method: The instrumental variables for SO factors were selected using the inverse variance-weighted method, which served as the primary approach for Mendelian randomization analysis to assess the causal effect based on summary data derived from genome-wide association studies of BPH. Result: The increase in BMR (OR = 1.248; 95% CI = (1.087, 1.432); P = 0.002) and ALM (OR = 1.126; 95% CI = (1.032, 1.228); P = 0.008) was found to be associated with an elevated risk of BPH. However, no genetic causality between fat-free mass distribution, muscle mass distribution, and BPH was observed. Conclusion: Our findings indicate that a genetic causal association between BMR, ALM and BPH. BMR and ALM are risk factors for BPH. The decrease in BMR and ALM signified the onset and progression of SO, thus SO is a protective factor for BPH.


Asunto(s)
Hiperplasia Prostática , Sarcopenia , Masculino , Humanos , Anciano , Sarcopenia/complicaciones , Hiperplasia Prostática/complicaciones , Hiperplasia Prostática/genética , Próstata , Estudio de Asociación del Genoma Completo , Hiperplasia/complicaciones , Obesidad/complicaciones
19.
JHEP Rep ; 5(12): 100903, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965158

RESUMEN

Background & Aims: ß-1,4-N-Acetyl-galactosaminyltransferase 1 (B4GALNT1) has been reported to contribute to the development of human malignancies. However, its role in hepatocellular carcinoma (HCC) remains uncharacterised. In this study, we aimed to elucidate the role of B4GALNT1 in HCC stemness and progression. Methods: Immunohistochemical staining was used to evaluate B4GALNT1 expression in HCC tissues and adjacent normal liver tissues. Flow cytometry analysis and sphere formation analysis were performed to investigate the role of B4GALNT1 in HCC stemness. Colony formation, Incucyte, wound-healing, Transwell migration, and invasion assays, and an animal model were used to study the role of B4GALNT1 in HCC progression. RNA-sequencing and co-immunoprecipitation were used to investigate the downstream targets of B4GALNT1. Results: B4GALNT1 was upregulated in HCC and associated with poor clinical outcome of patients with the disease. Moreover, B4GALNT1 promoted HCC stemness, migration, invasion, and growth. Mechanistically, B4GALNT1 not only promoted the expression of the integrin α2ß1 ligand THBS4, but also directly interacted with the ß subunit of integrin α2ß1 ITGB1 to inhibit its ubiquitin-independent proteasomal degradation, resulting in activation of FAK and AKT. Ophiopogonin D inhibited HCC stemness and progression by reducing ITGB1 and THBS4 expression and inhibiting FAK and AKT activation. Conclusions: Our study suggests the B4GALNT1/integrin α2ß1/FAK/PI3K/AKT axis as a therapeutic target for the inhibition of HCC stemness and tumour progression. Impact and implications: The role and regulatory mechanism of B4GALNT1 in HCC have not been studied previously. Here, we reveal that B4GALNT1 has a crucial role in HCC stemness and progression by activating the integrin α2ß1/FAK/PI3K/AKT axis, providing a potential target for HCC therapy. In addition, we find Ophiopogonin D as a potential therapeutic drug for patients with HCC.

20.
Sci Rep ; 13(1): 16531, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783702

RESUMEN

Halo abundance and structure play a central role for modeling structure formation and evolution. Without relying on a spherical or ellipsoidal collapse model, we analytically derive the halo mass function and cuspy halo density (inner slope of -4/3) based on the mass and energy cascade theory in dark matter flow. The hierarchical halo structure formation leads to halo or particle random walk with a position-dependent waiting time [Formula: see text]. First, the inverse mass cascade from small to large scales leads to the halo random walk in mass space with [Formula: see text], where [Formula: see text] is the halo mass and [Formula: see text] is a halo geometry parameter with predicted value of 2/3. The corresponding Fokker-Planck solution for halo random walk in mass space gives rise to the halo mass function with a power-law behavior on small scale and exponential decay on large scale. This can be further improved by considering two different [Formula: see text] for haloes below and above a critical mass scale [Formula: see text], i.e. a double-[Formula: see text] halo mass function. Second, a double-[Formula: see text] density profile can be derived based on the particle random walk in 3D space with a position-dependent waiting time [Formula: see text], where [Formula: see text] is the gravitational potential and r is the particle distance to halo center. Theory predicts [Formula: see text] that leads to a cuspy density profile with an inner slope of -4/3, consistent with the predicted scaling laws from energy cascade. The Press-Schechter mass function and Einasto density profile are just special cases of proposed models. The small scale permanence can be identified due to the scale-independent rate of mass and energy cascade, where density profiles of different halo masses and redshifts converge to the [Formula: see text] scaling law ([Formula: see text]) on small scales. Theory predicts the halo number density scales with halo mass as [Formula: see text], while the halo mass density scales as [Formula: see text]. Results were compared against the Illustris simulations. This new perspective provides a theory for nearly universal halo mass functions and density profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA