Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Asunto principal
Tipo de estudio
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 666: 201-209, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593654

RESUMEN

Perylene diimides (PDI) are widely used in photocatalytic oxygen evolution due to their deep valence band potentials. Here, we report the synthesis of a unique supramolecular photocatalyst (designated s-PDI-P1) by introducing hydroxyl and carboxyl groups at the imide position of PDI. This modification allows the formation of intermolecular double hydrogen bond structures between the hydroxyl groups, oxygen atoms on the perylene cores and the carboxyl groups. The resulting double hydrogen bonding structures reduce lateral slip and promote the formation of supramolecular structures with H-type π-π stacking. In addition, the intermolecular hydrogen bonding interactions between the hydroxyl groups and the oxygen atoms on the perylene cores bring the PDI molecules closer together, enhancing the conjugation of the PDI supramolecules and facilitating the formation of ultrathin nanosheet-like structures. In this study, we successfully constructed ultrathin nanosheets of the supramolecular photocatalyst s-PDI-P1 with a compact H-type π-π stacking structure, which exhibited enhanced charge transfer capability, shorter charge migration distance, and achieved a high photocatalytic oxygen evolution rate of 3.23 mmolg-1h-1. These results highlight the potential of intermolecular double hydrogen bond structures to improve the separation and migration driving force of photogenerated charges, thus providing a novel design strategy for organic photocatalysts.

2.
Phys Chem Chem Phys ; 26(15): 12199-12209, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591717

RESUMEN

The photocatalytic nitrogen reduction reaction (pNRR) is a clean technology that converts H2O and N2 into NH3 under environmental conditions using inexhaustible sunlight. Herein, we designed a novel two-dimensional (2D) Janus TiSiGeN4 structure and evaluated the pNRR performance of the structure with the presence of nitrogen vacancies at different positions using density functional theory (DFT) calculations. The intrinsic dipoles in the Janus TiSiGeN4 structure generate a built-in electric field, which promotes the migration of photogenerated electrons and holes towards the (001) and (00-1) surfaces, respectively, to achieve efficient charge separation. For the pNRR, the Si atoms exposed after the formation of top N vacancies can realize the efficient activation of N2 through the "acceptance-donation" mechanism, while the presence of middle N vacancies not only suppresses the hydrogen evolution reaction, a competition reaction, but also lowers the reaction barrier for the protonation of N atoms. The limiting potential of TiSiGeN4 with the coexistence of both top and middle N vacancies (TiSiGeN4-VN-mt) is as low as -0.44 V. In addition, the introduction of N vacancies generates defect levels, narrowing the band gap and improving the light response. This work provides theoretical guidance for the design of efficient pNRR photocatalysts under mild conditions.

3.
J Colloid Interface Sci ; 665: 41-59, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513407

RESUMEN

In the work, Bi2WO6/C-TiO2 photocatalyst was successfully synthesized for the first time by loading narrow bandgap semiconductor Bi2WO6 on MOF-derived carboxyl modified TiO2. The phase structure, morphology, photoelectric properties, surface chemical states and photocatalytic performance of the prepared photocatalysts were systematically investigated using various characterization tools. The degradation efficiency of oxytetracycline by 6BT Z-scheme heterojunction photocatalyst under visible light could reach 93.6 % within 100 min, which was related to the high light harvesting and effective separation and transfer of photo-generated carriers. Furthermore, the effects of various environmental factors in actual wastewater were further investigated, and the results showed that 6BT exhibited good adaptability, durability and resistance to interference. Unlike most works, the degradation system with a different single active species were designed and constructed based on their formation mechanism. In addition, for the first time, a positive study was conducted on the priority attack sites, intermediate products, and degradation pathways for the photocatalytic degradation of oxytetracycline by a single active species through HPLC-MS and Fukui index calculations. The toxicity changes of intermediate products produced in three different single active species oxidation systems were evaluated using toxicity assessment software tools (T.E.S.T.), Escherichia coli growth experiments, and wheat growth experiments. Among them, the intermediate products formed through O2- oxidation had the lowest toxicity and the main active sites it attacked were the 20C, 38O, 18C, 41O, and 55O atoms with high f+ values in the oxytetracycline molecular structure. This work provided the insight into the role of each active species in the degradation of antibiotics and offered new ideas for the design and synthesis of efficient and eco-friendly photocatalysts.


Asunto(s)
Oxitetraciclina , Oxitetraciclina/toxicidad , Antibacterianos/farmacología , Escherichia coli , Luz , Cromatografía Líquida con Espectrometría de Masas
4.
Small ; : e2311041, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342590

RESUMEN

The directional conversion of methane to ethylene is challenging due to the dissociation of the C─H bond and the self-coupling of methyl intermediates. Herein, a novel W/WO3- x catalyst with the fork vein structure consisting of an alternating arrangement of WO3- x and W is developed. Impressively, the catalyst achieves an unprecedented C2 H4 yield of 1822.73 µmol g-1  h-1 , with a selectivity of 82.49%. The enhanced catalytic activity is ascribed to the multifunctional synergistic effect induced by oxygen vacancies and W sites in W/WO3- x . Oxygen vacancies provide abundant coordination of unsaturation sites, which promotes the adsorption and activation of CH4 , thus reducing the dissociation energy barrier of the C─H bond. The CH2 coupling barrier on the metal W surface is significantly lower compared to WO3 , so CH2 can migrate to the W site for coupling. Importantly, the W/WO3- x with high periodicity provides multiple ordered local microelectric fields, and CH2 intermediates with dipole moments undergo orientation polarization and displacement polarization driven by the electric field, thus enabling CH2 migration. This work opens a new avenue for the structural design and modulation of photocatalysts, and provides new perspectives on the migration of methylene between multiple active sites.

5.
J Colloid Interface Sci ; 660: 381-392, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244504

RESUMEN

Single-atom photocatalysts can modulate the utilization of photons and facilitate the migration of photogenerated carriers. However, the preparation of single-atom uniformly doped photocatalysts is still a challenging topic. Herein, we propose the preparation of Ni single-atom doped g-C3N4 photocatalysts by metal vapor exfoliation. The Ni vapor produced by calcining nickel foam at high temperature accumulates in between g-C3N4 layers and poses a certain vapor pressure to destroy the interlayer van der Waals forces of g-C3N4. Individual metal atoms are doped into the structure while exfoliating g-C3N4 into nanosheets by metal vapor. Upon optimization of Ni content, the Ni single atom doped g-C3N4 nanosheets with 2.81 wt% Ni exhibits the highest CO2 reduction performance in the absence of sacrificial agents. The generation rates of CO and CH4 are 19.85 and 1.73 µmol g-1h-1, respectively. The improved photocatalytic performance is attributed to the anchoring Ni of single atoms on g-C3N4 nanosheets, which increases both carrier separation efficiency and reaction sites. This work provides insight into the design of photocatalysts with highly dispersed single-atom.

6.
J Colloid Interface Sci ; 643: 47-61, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37044013

RESUMEN

Exfoliating bulk graphite phase carbon nitride (g-C3N4) into 2D nanosheets is considered to be an effective method to enhance its photocatalytic activity. However, optical absorption capacity of the exfoliated g-C3N4 nanosheets are lower than that of the original bulk g-C3N4 due to the quantum size effect. Here, the ultrathin graphite phase carbon nitride nanosheets containing both carbon vacancy and cyano group (UCNS580) were prepared by two-step calcination in air with the assistance of KOH. The formation and position of carbon vacancy and cyano group were first investigated and determined. The simultaneous introduction of carbon vacancy and cyano group not only improved light absorption range and intensity of g-C3N4 nanosheets, but also more importantly constructed a fast transfer channel for photogenerated electrons, further enhancing the separation efficiency and migration ability of photogenerated carriers. The cyano group as the accumulation center of photogenerated electrons and the oxygen adsorption center increased the proportion of one-step two-electrons reaction path to efficiently generate H2O2. As a result, UCNS580 exhibited highly boosted H2O2 generation activity, its H2O2 production yield for 6 h reached 939 µmol/L and the formation rate was up to 4167 µM h-1 g-1, which was in priority in the reported literature under the same conditions.

7.
J Colloid Interface Sci ; 630(Pt B): 382-393, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332431

RESUMEN

A consensus is yet to be reached on the effects of oxygen vacancy (VO) on the performance of TiO2 for photocatalytic water splitting as contrasting viewpoints have been presented in the latest researches. Herein, a comprehensive set of spectroelectrochemical methods are deployed to clearly reveal the advantages and disadvantages of VO on the performance of TiO2. The results indicate that surface VO improves the photocatalytic activity while bulk VO has a negative effect on the water reduction performance of TiO2. Intensity-modulated photocurrent spectroscopy (IMPS) and UV-vis spectroscopy provide compelling evidence that the improvement of H2 evolution can be attributed to the presence of defect level, while the low interface charge transfer efficiency caused by surface VO limits the further improvement of photocatalytical H2 evolution, which can be alleviated by an organic hole transport coating. The density functional theory (DFT) and surface photovoltaic (SPV) analyses confirm that the built-in field between TiO2 and hole molecules is the reason for the interface charge transfer efficiency improvement. Our findings provide a comprehensive understanding of VO in TiO2 by carrier behavior analysis and a scheme to further promote the photocatalytic performance.

8.
J Colloid Interface Sci ; 628(Pt A): 259-272, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932665

RESUMEN

The photocatalytic production of H2O2 by graphite-phase carbon nitride (g-C3N4) using water and oxygen is a promising and sustainable method. Nevertheless, the yield of H2O2 produced by the pristine g-C3N4 is still far from satisfactory owing to limited optical absorption, rapid photogenerated electron-hole recombination and poor surface electron migration. Therefore, p-P1CN/CQDs25 was designed and synthesized by doping phosphorus (P) and loading carbon quantum dots (CQDs) to modify porous g-C3N4 (p-CN) via a facile method. Herein, P acted as an electron transfer bridge to induce electrons into CQDs, while CQDs acted as an electron trapping material to capture and stabilize photogenerated electrons. Moreover, CQDs could enhance their optical absorption due to its unique optical properties. Notably, p-P1CN/CQDs25 presented highly boosted H2O2 generation activity, its H2O2 production yield for 5 h was up to 494 µM/L and the formation rate constant Kf in the first hour was 238 µM h-1 without adding sacrificial agents and without bubbling oxygen under visible light, which took precedence among the reported results under the same conditions. It should be noted that the composite p-P1CN/CQDs25 also possessed low H2O2 decomposition behavior based on the effect of CQDs stabilizing electrons. In addition, the possible mechanism of photocatalytic H2O2 generation for p-P1CN/CQDs25 was also proposed. Our research provided a new idea for the design of novel photocatalysts to efficient generation of H2O2.

9.
Phys Chem Chem Phys ; 24(4): 2032-2039, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34994357

RESUMEN

Carbon dioxide (CO2) activation by effective electrons has been regarded as the rather necessary first-step for a CO2 reduction reaction (CO2RR). In addition, the electron migration and photoreaction selectivity are closely associated with the dominant crystal surface of a catalyst. Therefore, it is very interesting and important to elucidate the electron transfer and charge density effects on the catalyst surface for the CO2RR. In this work, the dominant highly-active BiOBr(001) surfaces with Bi-, O- and Br-termination atoms are designed so that their electron distributions and CO2RR behaviors can be observed. The electron-rich sites on the BiOBr(001) surfaces, where more effective electrons will migrate to achieve the activation of the adsorbed CO2, are firstly confirmed by the electron density difference based on density functional theory calculations. Next, the CO2RR pathways at the electron-rich sites are investigated to explore the migration mechanism of effective photo-induced electrons. The results obtained reveal that if a larger number of electrons transfer to CO2, then less energy is needed to break the CO bond, and the formation of a *COOH intermediate corresponds to the ability of the surface to take part in protonation. Furthermore, the interface Bi atom can boost the transfer efficiency of effective electrons to CO2, but the exposed Br atom with a longer electron transfer distance, because of the steric hindrance of the interface Br atoms, makes it difficult for the electrons to migrate, resulting in it being harder to fracture the CO bond to benefit the formation of the HCOOH product. These findings should give deep insight into the migration behaviors of effective electrons for CO2 photoreduction on the BiOBr(001) surface and provide new perspectives for better understanding the structure-performance relationship at the molecular level.

10.
J Colloid Interface Sci ; 609: 535-546, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34802758

RESUMEN

Rapid heat loss and fast charge carrier recombination constitute two crucial issues that hinder the development of efficient solar energy utilization and conversion over the semiconductor in a photothermal catalytic system. Inspired by energy production from waste water, we designed an advanced 3D C@TiO2 multishell nanoframe (MNF) photocatalyst. Its unique structural features of heat confinement and vibrant photocarrier kinetics lead to excellent photo-thermal conversion for synchronous superior photocatalytic H2 evolution (503 µmol g-1h-1) and 98.2% RhB removal without the use of any co-catalyst and sacrificial reagent under simulated sunlight irradiation (AM 1.5G). Mechanism exploration reveals that the difference between the inner and outer gas pressure formed inside C@TiO2 precursor facilitates the selective cleavage of outer TiO2 layers at selected temperatures during calcination. Synergistic effects between residual carbon core and multi-shelled TiO2 framework endow C@TiO2 MNF with excellent heat confinement and vibrant photocarrier kinetics. Such MNF photo-thermocatalyst concept provides a novel strategy for effective utilization of solar energy, and this work may open a novel avenue towards advanced nanostructures for efficient waste-to-energy conversion.

12.
ACS Appl Mater Interfaces ; 13(16): 18758-18771, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33853323

RESUMEN

The synergistic effect of surface oxygen vacancy with induced lattice strains on visible light-driven photocatalytic H2 evolution over black TiO2 was investigated. Experimental measurements and theoretical calculations on the lattice parameters of black TiO2 show that surface oxygen vacancies induce internal lattice strain during two-step aluminothermic reduction, which regulates the band structure and optimizes the photoinduced charge behavior of black TiO2. The hydrogen evolution rate of black TiO2 with strain modification shows a 12-fold increase to 1.882 mmol/g· h (equal to 4.705 µmol/cm2·h) under visible light illumination. The metastable state caused by the surface oxygen vacancies leads to the formation of a high-energy surface, which enhances visible light absorption and improves the photoinduced charge separation efficiency. Furthermore, the internal lattice strain provides the driving force and channel for the directional movement of photoinduced electrons from the bulk to the high-energy surface for photocatalytic H2 evolution. This strategy provides a new method for designing a high-performance photocatalyst for H2 production.

13.
Sci Rep ; 7(1): 7017, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765620

RESUMEN

This work reports the oxygen reduction reaction (ORR) kinetics of metal nanoparticle catalysts between 500 and 600 °C at low oxygen partial pressures. Ex situ and in situ TEM measurements demonstrate catalyzed nanowire growth initially follows linear kinetics; characteristic of being ORR rate limited. The ORR rates of Ag, Au, Cu, Ni, Pd, Rh and Pt measured at 600 °C form a volcano plot versus relative oxidation potential. Cu nanoparticles produce the maximum ORR rate under these conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA