Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1191837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577435

RESUMEN

Multidrug-resistant Enterococcus faecalis (E. faecalis) often cause intestinal infections in cats. The aim of this study was to investigate a multidrug-resistant E. faecalis isolate for plasmidic and chromosomal antimicrobial resistance and their genetic environment. E. faecalis strain ESC1 was obtained from the feces of a cat. Antimicrobial susceptibility testing was carried out using the broth microdilution method. Conjugation experiments were performed using Escherichia coli and Staphylococcus aureus as receptors. Complete sequences of chromosomal DNA and plasmids were generated by whole genome sequencing (WGS) and bioinformatics analysis for the presence of drug resistance genes and mobile elements. Multidrug-resistant E. faecalis ESC1 contained a chromosome and three plasmids. The amino acid at position 80 of the parC gene on the chromosome was mutated from serine to isoleucine, and hence the amino acid mutation at this site led to the resistance of ESC1 strain to fluoroquinolones. Eleven antibiotic resistance genes were located on two plasmids. We identified a novel composite transposon carrying two aminoglycoside resistance genes aac(6')-aph(2″). This study reported the coexistence of a novel 5.4 kb composite transposon and a resistance plasmid with multiple homologous recombination in an isolate of E. faecalis ESC1. This data provides a basis for understanding the genomic signature and antimicrobial resistance mechanisms of this pathogen.

2.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240435

RESUMEN

Antibiotic tolerance has become an increasingly serious crisis that has seriously threatened global public health. However, little is known about the exogenous factors that can trigger the development of antibiotic tolerance, both in vivo and in vitro. Herein, we found that the addition of citric acid, which is used in many fields, obviously weakened the bactericidal activity of antibiotics against various bacterial pathogens. This mechanistic study shows that citric acid activated the glyoxylate cycle by inhibiting ATP production in bacteria, reduced cell respiration levels, and inhibited the bacterial tricarboxylic acid cycle (TCA cycle). In addition, citric acid reduced the oxidative stress ability of bacteria, which led to an imbalance in the bacterial oxidation-antioxidant system. These effects together induced the bacteria to produce antibiotic tolerance. Surprisingly, the addition of succinic acid and xanthine could reverse the antibiotic tolerance induced by citric acid in vitro and in animal infection models. In conclusion, these findings provide new insights into the potential risks of citric acid usage and the relationship between antibiotic tolerance and bacterial metabolism.


Asunto(s)
Antibacterianos , Estrés Oxidativo , Animales , Antibacterianos/farmacología , Bacterias , Ciclo del Ácido Cítrico
3.
J Glob Antimicrob Resist ; 34: 83-90, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37210003

RESUMEN

OBJECTIVES: This study was conducted in Jilin Province to investigate the mechanism involved in the antibiotic resistance and pathogenicity of Klebsiella pneumoniae. METHODS: Lung samples were collected from large-scale pig farms in Jilin Province. Antimicrobial susceptibility and mouse lethality assays were carried out. K. pneumoniae isolate JP20, with high virulence and antibiotic resistance, was chosen for whole-genome sequencing. The complete sequence of its genome was annotated, and the virulence and antibiotic resistance mechanism were analysed. RESULTS: A total of 32 K. pneumoniae strains were isolated and tested for antibiotic resistance and pathogenicity. Among them, the JP20 strain showed high levels of resistance to all tested antimicrobial agents and strong pathogenicity in mice (lethal dose of 1.35 × 1011 CFU/mL). Sequencing of the multidrug-resistant and highly virulent K. pneumoniae JP20 strain revealed that the antibiotic resistance genes were mainly carried by an IncR plasmid. We speculate that extended-spectrum ß-lactamases and loss of outer membrane porin OmpK36 play an important role in carbapenem antibiotic resistance. This plasmid contains a mosaic structure consisting of a large number of mobile elements. CONCLUSION: Through genome-wide analysis, we found that an lncR plasmid carried by the JP20 strain may have evolved in pig farms, possibly leading to multidrug resistance in the JP20 strain. It is speculated that the antibiotic resistance of K. pneumoniae in pig farms is mainly mediated by mobile elements (insertion sequences, transposons, and plasmids). These data provide a basis for monitoring the antibiotic resistance of K. pneumoniae and lay a foundation for an improved understanding of the genomic characteristics and antibiotic resistance mechanism of K. pneumoniae.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Porcinos , Animales , Ratones , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Infecciones por Klebsiella/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología
4.
Vet Sci ; 10(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104412

RESUMEN

Pasteurella multocida (Pm) is one of the major pathogens of bovine respiratory disease (BRD), which can develop drug resistance to many of the commonly used antibiotics. Our earlier research group found that with clinical use of enrofloxacin, Pm was more likely to develop drug resistance to enrofloxacin. In order to better understand the resistance mechanism of Pm to enrofloxacin, we isolated PmS and PmR strains with the same PFGE typing in vitro, and artificially induced PmR to obtain the highly resistant phenotype, PmHR. Then transcriptome sequencing of clinically isolated sensitive strains, resistant and highly drug-resistant strains, treated with enrofloxacin at sub-inhibitory concentrations, were performed. The satP gene, of which the expression changed significantly with the increase in drug resistance, was screened. In order to further confirm the function of this gene, we constructed a satP deletion (ΔPm) strain using suicide vector plasmid pRE112, and constructed the C-Pm strain using pBBR1-MCS, and further analyzed the function of the satP gene. Through a continuously induced resistance test, it was found that the resistance rate of ΔPm was obviously lower than that of Pm in vitro. MDK99, agar diffusion and mutation frequency experiments showed significantly lower tolerance of ΔPm than the wild-type strains. The pathogenicity of ΔPm and Pm was measured by an acute pathogenicity test in mice, and it was found that the pathogenicity of ΔPm was reduced by about 400 times. Therefore, this study found that the satP gene was related to the tolerance and pathogenicity of Pm, and may be used as a target of enrofloxacin synergistic effect.

5.
Front Cell Infect Microbiol ; 13: 1288666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38384432

RESUMEN

Introduction: Colorectal cancer (CRC) is the third most common malignant tumor, and neoadjuvant chemo-radiotherapy is usually recommended for advanced stage colorectal cancer. Radiotherapy can cause damage to intestinal mucosal barrier, which may be related to perioperative complications. Intestinal microbiota is one of the constituents of the intestinal mucosal biological barrier, and literature reports that patients with CRC have changes in corresponding oral microbiota. This study aims to analyze the levels of immunoglobulin SIgA, inflammatory factors, lymphocyte subsets quantity, and proportion in surgical specimens of intestinal mucosa at different time intervals after radiotherapy, in order to seek investigation for the optimal surgical time after radiotherapy and to provide evidence for finding probiotics or immunomodulators through high-throughput sequencing of bacterial 16s rRNA in patients' saliva microbiota. Ultimately, this may provide new ideas for reducing perioperative complications caused by radiotherapy-induced intestinal damage. Methods: We selected intestinal mucosal tissue and saliva samples from over 40 patients in our center who did not undergo radiotherapy and underwent surgery at different time intervals after radiotherapy. Detection of SIgA was performed using ELISA assay. Western Blotting was used to detect IL-1ß, IL-6, and IL-17 in the intestinal mucosal tissue. Flow cytometry was used to detect CD4 and CD8. And the microbial community changes in saliva samples were detected through 16s rRNA sequencing. Results: After radiotherapy, changes in SIgA, various cytokines, CD4CD8 lymphocyte subsets, and oral microbiota in the intestinal mucosal tissue of rectal cancer patients may occur. Over time, this change may gradually recover. Discussion: In colorectal cancer, oncological aspects often receive more attention, while studies focusing on the intestinal mucosal barrier are less common. This study aims to understand the repair mechanisms of the intestinal mucosal barrier and reduce complications arising from radiotherapy-induced damage. The relationship between oral microbiota and systemic diseases has gained interest in recent years. However, the literature on the oral microbiota after radiotherapy for rectal cancer remains scarce. This study addresses this gap by analysing changes in the salivary microbiota of rectal cancer patients before and after radiotherapy, shedding light on microbiota changes. It aims to lay the groundwork for identifying suitable probiotics or immunomodulators to alleviate perioperative complications and improve the prognosis of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Neoplasias del Recto , Humanos , ARN Ribosómico 16S/genética , Funcion de la Barrera Intestinal , Mucosa Intestinal/microbiología , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/microbiología , Neoplasias del Recto/metabolismo , Neoplasias del Recto/microbiología , Neoplasias del Recto/patología , Factores Inmunológicos/metabolismo , Inmunoglobulina A Secretora/metabolismo
6.
J Microbiol Biotechnol ; 31(10): 1350-1357, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34409949

RESUMEN

Staphylococcus aureus (S. aureus) is a major pathogen that causes human pneumonia, leading to significant morbidity and mortality. S. aureus coagulase (Coa) triggers the polymerization of fibrin by activating host prothrombin, which then converts fibrinogen to fibrin and contributes to S. aureus pathogenesis and persistent infection. In our research, we demonstrate that isovitexin, an active traditional Chinese medicine component, can inhibit the coagulase activity of Coa but does not interfere with the growth of S. aureus. Furthermore, we show through thermal shift and fluorescence quenching assays that isovitexin directly binds to Coa. Dynamic simulation and structure-activity relationship analyses suggest that V191 and P268 are key amino acid residues responsible for the binding of isovitexin to Coa. Taken together, these data indicate that isovitexin is a direct Coa inhibitor and a promising candidate for drug development against S. aureus infection.


Asunto(s)
Apigenina/farmacología , Coagulasa/antagonistas & inhibidores , Staphylococcus aureus/enzimología , Sitios de Unión , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...