Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Respir J ; 17(10): 975-985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37105551

RESUMEN

INTRODUCTION: Asthma and bronchiolitis in children are considered common clinical problems associated with gut microbiota. However, the exact relationship between gut microbiota and the above-mentioned diseases remains unclear. Here, we discussed recent advances in understanding the potential mechanism underlying immune regulation of gut microbiota on asthma and bronchiolitis in children as well as the role of the gut-lung axis. METHODS: We retrieved and assessed all relevant original articles related to gut microbiota, airway inflammation-induced wheezing in children, and gut-lung axis studies from databases that have been published so far, including PubMed/MEDLINE, Scopus, Google Scholar, China National Knowledge Infrastructure (CNKI) and the Wanfang Database. RESULTS: The infant period is critical for the development of gut microbiota, which can be influenced by gestational age, delivery mode, antibiotic exposure and feeding mode. The gut microbiota in children with asthma and bronchiolitis is significantly distinct from those in healthy subjects. Gut microbiota dysbiosis is implicated in asthma and bronchiolitis in children. The presence of intestinal disturbances in lung diseases highlights the importance of the gut-lung axis. CONCLUSION: Gut microbiota dysbiosis potentially increases the risk of asthma and bronchiolitis in children. Moreover, a deeper understanding of the gut-lung axis with regard to the gut microbiota of children with respiratory diseases could contribute to clinical practice for pulmonary diseases.


Asunto(s)
Asma , Bronquiolitis , Microbioma Gastrointestinal , Lactante , Niño , Humanos , Disbiosis/complicaciones , Asma/epidemiología , Bronquiolitis/epidemiología , Pulmón
2.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33876818

RESUMEN

To investigate whether butyric acid could alleviate chronic intermittent hypoxia (CIH)-induced lipid formation in human preadipocytes-subcutaneous (HPA-s) through accumulation of human antigen R (HuR) and inactivation of AMP-activated protein kinase (AMPK) pathway, HPA-s were obtained and divided into three groups: Control group: cells were cultured under normal conditions; CIH group: cells were cultured in a three-gas incubator (10% O2); Butyric acid group: 10 mmol/l butyric acid added into cell culture medium. HuR-siRNA was futher transfected into CIH group for verification the function of HuR. Oil Red O was implemented for observation of lipid droplets within cells. Cell Counting Kit-8 (CCK8) assay was used for detecting cell viability. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labeling (TUNEL) assay as well as flow cytometry analysis was employed for determining cell apoptosis. Western blotting was used for measurement of protein expression levels. RT-qPCR analysis was used for detecting mRNA expression. CIH treatment increased adipocytes proliferation, while butyric acid inhibited cell proliferation and promoted cell apoptosis. The treatment of butyric acid in CIH group down-regulated expression of inflammatory factors and increased cell apoptotic rate. Butyric acid treatment increased HuR expression in both cytoplasm and nucleus and decreased the level of p-AMPK and p-ACC, while transfection of AMPK activator or HuR-siRNA would down-regulate HuR expression. Moreover, butyric acid alleviated CIH-induced cell proliferation, lipid formation and inflammatory status and promoted cell apoptosis through regulating related genes including p21, PPARγ, C/EBPa, IL-1ß, IL-6, TLR4, caspase-8 and caspase-3. In conclusion, butyric acid could alleviate CIH-induced inflammation, cell proliferation and lipid formation through accumulation of HuR and inactivation of AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Antiinflamatorios/farmacología , Ácido Butírico/farmacología , Proteína 1 Similar a ELAV/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/enzimología , Lipogénesis/efectos de los fármacos , Adipocitos/enzimología , Adipocitos/patología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Hipoxia de la Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteína 1 Similar a ELAV/genética , Humanos , Inflamación/genética , Inflamación/patología , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...