Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664366

RESUMEN

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular , Morfolinas , Nectinas , Neoplasias de la Vejiga Urinaria , Autofagia/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Animales , Línea Celular Tumoral , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Ratones , Morfolinas/farmacología , Morfolinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Oligopéptidos/farmacología , Apoptosis/efectos de los fármacos , Ratones Desnudos , Cromonas/farmacología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ratones Endogámicos BALB C , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Biosens Bioelectron ; 255: 116270, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588628

RESUMEN

Hepatocellular carcinoma (HCC), as one of the most lethal cancers, significantly impacts human health. Attempts in this area tends to develop novel technologies with sensitive and multiplexed detection properties for early diagnosis. Here, we present novel hydrogel photonic crystal (PhC) barcodes with tyramine deposition amplified enzyme-linked immunosorbent assay (ELISA) for highly sensitive and multiplexed HCC biomarker screening. Because of the abundant amino groups of acrylic acid (AA) component, the constructed hydrogel PhC barcodes with inverse opal structure could facilitate the loading of antibody probes for subsequent detection of tumor markers. By integrating tyramine deposition amplified ELISA on the barcode, the detection signal of tumor markers has been enhanced. Based on these features, it is demonstrated that the hydrogel PhC barcodes with tyramine deposition amplified ELISA could realize highly sensitive and multiplexed detection of HCC-related biomarkers. It was found that this method is flexible, sensitive and accurate, suitable for multivariate analysis of low abundance tumor markers and future cancer diagnosis. These features make the newly developed PhC barcodes an innovation platform, which possesses tremendous potential for practical application of low abundance targets.


Asunto(s)
Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Hidrogeles/química , Carcinoma Hepatocelular/diagnóstico , Técnicas Biosensibles/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores de Tumor , Ensayo de Inmunoadsorción Enzimática , Tiramina
3.
Animals (Basel) ; 14(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672375

RESUMEN

A pig inventory is a crucial component of achieving precise and large-scale farming. In complex pigsty environments, due to pigs' stress reactions and frequent obstructions, it is challenging to count them accurately and automatically. This difficulty contrasts with most current deep learning studies, which rely on overhead views or static images for counting. This research proposes a video-based dynamic counting method, combining YOLOv7 with DeepSORT. By utilizing the YOLOv7 network structure and optimizing the second and third 3 × 3 convolution operations in the head network ELAN-W with PConv, the model reduces the computational demand and improves the inference speed without sacrificing accuracy. To ensure that the network acquires accurate position perception information at oblique angles and extracts rich semantic information, we introduce the coordinate attention (CA) mechanism before the three re-referentialization paths (REPConv) in the head network, enhancing robustness in complex scenarios. Experimental results show that, compared to the original model, the improved model increases the mAP by 3.24, 0.05, and 1.00 percentage points for oblique, overhead, and all pig counting datasets, respectively, while reducing the computational cost by 3.6 GFLOPS. The enhanced YOLOv7 outperforms YOLOv5, YOLOv4, YOLOv3, Faster RCNN, and SSD in target detection with mAP improvements of 2.07, 5.20, 2.16, 7.05, and 19.73 percentage points, respectively. In dynamic counting experiments, the improved YOLOv7 combined with DeepSORT was tested on videos with total pig counts of 144, 201, 285, and 295, yielding errors of -3, -3, -4, and -26, respectively, with an average accuracy of 96.58% and an FPS of 22. This demonstrates the model's capability of performing the real-time counting of pigs in various scenes, providing valuable data and references for automated pig counting research.

4.
Cancer Immunol Immunother ; 73(4): 75, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532108

RESUMEN

BACKGROUND: CD47, serving as an intrinsic immune checkpoint, has demonstrated efficacy as an anti-tumor target in hematologic malignancies. Nevertheless, the clinical relevance of CD47 in gastric cancer and its potential as a therapeutic target remains unclear. METHODS: The expression of CD47 in clinical gastric cancer tissues was assessed using immunohistochemistry and Western blot. Patient-derived cells were obtained from gastric cancer tissues and co-cultured with macrophages derived from human peripheral blood mononuclear cells. Flow cytometry analyses were employed to evaluate the rate of phagocytosis. Humanized patient-derived xenografts (Hu-PDXs) models were established to assess the efficacy of anti-CD47 immunotherapy or the combination of anti-CD47 and anti-VEGF therapy in treating gastric cancer. The infiltrated immune cells in the xenograft were analyzed by immunohistochemistry. RESULTS: In this study, we have substantiated the high expression of CD47 in gastric cancer tissues, establishing a strong association with unfavorable prognosis. Through the utilization of SIRPα-Fc to target CD47, we have effectively enhanced macrophage phagocytosis of PDCs in vitro and impeded the growth of Hu-PDXs. It is noteworthy that anti-CD47 immunotherapy has been observed to sustain tumor angiogenic vasculature, with a positive correlation between the expression of VEGF and CD47 in gastric cancer. Furthermore, the successful implementation of anti-angiogenic treatment has further augmented the anti-tumor efficacy of anti-CD47 therapy. In addition, the potent suppression of tumor growth, prevention of cancer recurrence after surgery, and significant prolongation of overall survival in Hu-PDX models can be achieved through the simultaneous targeting of CD47 and VEGF using the bispecific fusion protein SIRPα-VEGFR1 or by combining the two single-targeted agents. CONCLUSIONS: Our preclinical studies collectively offer substantiation that CD47 holds promise as a prospective target for gastric cancer, while also highlighting the potential of anti-angiogenic therapy to enhance tumor responsiveness to anti-CD47 immunotherapy.


Asunto(s)
Neoplasias , Neoplasias Gástricas , Animales , Humanos , Antígeno CD47 , Modelos Animales de Enfermedad , Inmunoterapia , Leucocitos Mononucleares/metabolismo , Recurrencia Local de Neoplasia , Fagocitosis , Factor A de Crecimiento Endotelial Vascular
5.
J Hazard Mater ; 469: 134022, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484662

RESUMEN

Sulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation. This study synthesized S-nZVI with different S and Fe precursors to investigate the effect of precursors and applied the optimal material to immobilize Cd in sediments. Characterization analysis revealed that the precursor affected the morphology, Fe0 crystallinity, and the degree of oxidation of the material. Incubation experiments demonstrated that the immobilization efficiency of Cd using S-nZVIFe3++S2- (S/Fe = 0.14) reached the peak value of 99.54%. 1% and 5% dosages of S-nZVI significantly reduced Cd concentration in the overlying water, DTPA-extractable Cd content, and exchangeable (EX) Cd speciation (P < 0.05). Cd leaching in sediment and total iron in the overlying water remained at low levels during 90 d of incubation. Notably, each treatment maintained a high Cd immobilization efficiency under different pH, water/sediment ratio, organic acid, and coexisting ion conditions. Sediment physicochemical properties, functional bacteria, and a range of adsorption, complexation and precipitation of CdS effects dominated Cd immobilization.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Cadmio/química , Contaminantes Químicos del Agua/química , Agua , Adsorción
6.
Water Res ; 253: 121309, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367381

RESUMEN

Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Antibacterianos/farmacología , Hierro/química , Oxidación-Reducción , Farmacorresistencia Microbiana/genética , Adsorción , Contaminantes Químicos del Agua/química
7.
J Environ Manage ; 353: 120157, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38295639

RESUMEN

Nanoscale zerovalent iron (Fe0)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe0-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe0 (CMC-Fe0/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.0 % and 94.8 % after 180 days of aging. Most importantly, different from the immobilization mechanisms of the fresh CMC-Fe0/FeS for U(VI) (the adsorption effect of -COOH and -OH groups, coordination effect with sulfur species, as well as reduction effect of Fe0), the re-mobilized U(VI) were finally re-immobilized by the formed FeOOH and Fe3O4 on the aged CMC-Fe0/FeS. Under anoxic conditions, more Fe3O4 was produced, which may be the main reason for the long-term immobilization U(VI). Under oxic conditions, the production of Fe3O4 and FeOOH were relatively high, which both played significant roles in re-immobilizing U(VI) through surface complexation, reduction and incorporation effects.


Asunto(s)
Uranio , Carboximetilcelulosa de Sodio , Hierro , Adsorción
8.
Environ Sci Pollut Res Int ; 31(7): 10950-10966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214863

RESUMEN

The pollution of antibiotics, specifically ciprofloxacin (CIP), has emerged as a significant issue in the aquatic environment. Advanced oxidation processes (AOPs) are capable of achieving stable and efficient removal of antibiotics from wastewater. In this work, biochar-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC) was adopted to activate persulfate (PS) for the degradation of CIP. The impacts of different influencing factors such as S/Fe molar ratios, BC/S-nZVI mass ratios, PS concentration, S-nZVI/BC dosage, CIP concentration, initial pH, coexisting anions, and humic acid on CIP degradation efficiency were explored by batch experiments. The results demonstrated that the highest degradation ability of S-nZVI/BC was achieved when the S/Fe molar ratio was 0.07 and the BC/S-nZVI mass ratio was 1:1. Under the experimental conditions with 0.6 g/L S-nZVI/BC, 2 mmol/L PS, and 10 mg/L CIP, the degradation rate reached 97.45% after 90 min. The S-nZVI/BC + PS system showed significant degradation in the pH range from 3 to 9. The coexisting anions affected the CIP degradation efficiency in the following order: CO32- > NO3- > SO42- > Cl-. The radical quenching experiments and electron paramagnetic resonance (EPR) revealed that oxidative species, including SO4•-, HO•, •O2-, and 1O2, all contribute to the degradation of CIP, in which •O2- plays a particularly prominent role. Furthermore, the probable degradation pathway of CIP was explored according to the 12 degradation intermediates identified by LC-MS. This study provides a new idea for the activation method of PS and presents a new approach for the treatment of aqueous antibiotics with highly catalytic active nanomaterials.


Asunto(s)
Carbón Orgánico , Ciprofloxacina , Contaminantes Químicos del Agua , Hierro , Contaminantes Químicos del Agua/análisis , Antibacterianos , Agua
9.
Medicine (Baltimore) ; 103(2): e36811, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215119

RESUMEN

BACKGROUND: Autophagy is essential for the homeostasis and function of the cardiovascular system. Citespace is a visual analysis software developed in the context of scientometrics and data visualization. The purpose of this study is to use Citespace software to conduct bibliometric and visual analysis of the research on autophagy in cardiovascular diseases, identify the current status, hot spots and trends in this field, help researchers clarify the future research focus and direction of autophagy in cardiovascular diseases, and provide more positive and broader ideas for the treatment and drug development of cardiovascular diseases. METHODS: In the Web of Science Core Collection database to download the data from 2004 to 2022 regarding autophagy in cardiovascular research. CitespaceV was used to collect the research status, hotspots and development trends for visual analysis. RESULTS: The 3568 articles were published by 547 authors from 397 institutions in 75 countries. From 2004 to 2021, the annual publications increased over time. The top 3 productive nations were China, the United States, and Germany. The leading institution was China's Fudan University. The most cited paper is Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). The research hotpots include monitoring methods for autophagy activity, changes in autophagy levels in different types of cardiovascular diseases, autophagy signal transduction mechanism in cardiovascular diseases, etc. CONCLUSION: Bibliometric analysis provided valuable information for autophagy research in cardiovascular disease, which is full of opportunities and challenges. The research of autophagy in the field of cardiovascular diseases is still worthy of in-depth exploration. A challenge with autophagy-targeted therapies is their dichotomy in which the goal is to target maladaptive autophagy while maintaining a baseline level of cell survival to optimize a beneficial outcome. It is necessary for scientists to develop new methods to evaluate the level of autophagy from basic application to human body and reveal the signaling mechanism of autophagy in different types of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Bibliometría , Autofagia , Bioensayo
10.
Eur J Med Res ; 28(1): 500, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37941017

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is a very common arrhythmia with significant incidence rate and mortality. Several studies have shown a notable correlation between non-alcoholic fatty liver disease (NAFLD) and AF. It has been observed that serum cholinesterase (SChE) levels are elevated in individuals with fatty liver. However, the relationship between the SChE index and AF is still unclear. Therefore, the purpose of this study is to explore the association between the SChE index and the prevalence of AF in patients with hypertension. METHOD: We collected cross-sectional data from January 2018 to April 2021 based on a retrospective study of cardiovascular disease. A total of 748 patients with hypertension were included, of whom 165 had AF. We used logistic regression models to test the relationship between SChE and the prevalence of AF in hypertensive patients. RESULT: In hypertensive patients, the SChE index was significantly associated with AF (OR = 0.723, P < 0.001). After adjusting for potential confounding factors, this correlation was still significant (OR = 0.778, P < 0.001). The stability of the model was verified by adjusting the variable type of SChE. The data were further stratified according to whether the patient had fatty liver. In the stratified data, the correlation between SChE and atrial fibrillation was still significant (P < 0.05). CONCLUSION: Our study showed that SChE was significantly negatively correlated with the occurrence of AF in patients with hypertension. And this correlation was not affected by whether the patient had fatty liver.


Asunto(s)
Fibrilación Atrial , Colinesterasas , Hipertensión , Humanos , Fibrilación Atrial/complicaciones , Colinesterasas/sangre , Estudios Transversales , Pueblos del Este de Asia , Hipertensión/complicaciones , Hipertensión/epidemiología , Prevalencia , Estudios Retrospectivos , Factores de Riesgo
11.
RSC Adv ; 13(46): 32083-32096, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37920753

RESUMEN

The improvement in the overall efficiency of thin-film composite (TFC) reverse osmosis (RO) membranes is limited by their low permeability and sensitivity to degradation by chlorine. In the present study, polypiperazine (PIP), the commonly used amine monomer in preparing commercial TFC nanofiltration (NF) membranes, was used to regulate the m-phenylenediamine (MPD) based interfacial polymerization (IP) process. The results showed that addition of PIP optimized the micro-structure and surface properties of the polyamide (PA) layer. When the MPD and PIP mass ratio was 1 : 1, the TFCW-1:1 membrane exhibited 70% flux enhancement compared to pure MPD-based TFCW-1:0 membranes. Besides, the TFCW-1:1 membrane exhibited better chlorine-resistant performance since the NaCl rejection declined to just 3.8% while it was 11.3% for TFCW-1:0 membranes after immersion in 500 ppm NaClO solution for 48 h. Such improvement can be attributed to the increased number of unreacted amine groups and the thickness of the PA layer that PIP brought, which provided a sacrificial protective layer to consume the active chlorine, and thus maintain the integrity of the inner rejection layer. In all, the novelty and purpose of the present work is to find a more simple and scalable method to fabricate high-performance TFC RO membranes by using commonly, cheaply and frequently used materials.

12.
Environ Sci Pollut Res Int ; 30(55): 117892-117908, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37874516

RESUMEN

Modified nanoscale zero-valent iron (NZVI) exhibited great potential for the remediation of heavy metal contaminated river sediments, but its mechanisms and environmental risks are still unclear. This study systematically discussed the performance and the mechanisms of modified NZVI materials, i.e., sodium alginate-coated NZVI (SNZVI), rhamnolipid-coated NZVI (RNZVI), and graphene oxide-loaded NZVI (GNZVI), for the stabilization of Cd in sediment, with the exploration of their stability to Cd at various pH values and Fe dissolution rate. Compared with the control, the toxicity characteristic leaching procedure (TCLP) leachable Cd decreased by 52.66-96.28%, and the physiologically based extraction test (PBET) extractable Cd decreased by 44.68-70.21% after 56 days of incubation with the immobilization efficiency varying according to GNZVI > RNZVI > SNZVI > NZVI. Besides, the adsorption behavior of Cd on materials was fitted with the Freundlich model and classified as an endothermic, spontaneous, and chemical adsorption process. SEM-EDX, XRD, and FTIR results verified that the stabilization mechanisms of Cd were principally based on the adsorption, complexation of Cd2+ with secondary Fe minerals (including Fe2O3, γ-Fe2O3, and γ-FeOOH) and precipitation (Cd(OH)2). From the risk assessment results, it was observed that the materials were favorable for Cd stabilization at a pH range from 7 to 11, meanwhile, the leaching concentration of Fe in the overlying water was detected below the limit value. These findings pave the way to developing an effective strategy to remediate Cd contaminated river sediments.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes Químicos del Agua , Hierro , Cadmio , Ríos , Adsorción
13.
Front Cell Dev Biol ; 11: 1252942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766966

RESUMEN

Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1ß, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 µg/ml, 0.1 µg/ml). ELISA measured IL-1ß, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1ß, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1ß, pro-IL-1ß, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1ß, pro-IL-1ß, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.

14.
Environ Sci Pollut Res Int ; 30(46): 101933-101962, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659023

RESUMEN

Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.

15.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37510993

RESUMEN

Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Inmunidad Innata , Inmunoterapia , Linfocitos T , Biología , Microambiente Tumoral
16.
Cardiovasc Diabetol ; 22(1): 142, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330498

RESUMEN

BACKGROUND: Biomarker of insulin resistance, namely triglyceride-glucose index, is potentially useful in identifying critically ill patients at high risk of hospital death. However, the TyG index might have variations over time during ICU stay. Hence, the purpose of the current research was to verify the associations between the dynamic change of the TyG index during the hospital stay and all-cause mortality. METHODS: The present retrospective cohort study was conducted using the Medical Information Mart for Intensive Care IV 2.0 (MIMIC-IV) critical care dataset, which included data from 8835 patients with 13,674 TyG measurements. The primary endpoint was 1-year all-cause mortality. Secondary outcomes included in-hospital all-cause mortality, the need for mechanical ventilation during hospitalization, length of stay in the hospital. Cumulative curves were calculated using the Kaplan-Meier method. Propensity score matching was performed to reduce any potential baseline bias. Restricted cubic spline analysis was also employed to assess any potential non-linear associations. Cox proportional hazards analyses were performed to examine the association between the dynamic change of TyG index and mortality. RESULTS: The follow-up period identified a total of 3010 all-cause deaths (35.87%), of which 2477 (29.52%) occurred within the first year. The cumulative incidence of all-cause death increased with a higher quartile of the TyGVR, while there were no differences in the TyG index. Restricted cubic spline analysis revealed a nearly linear association between TyGVR and the risk of in-hospital all-cause mortality (P for non-linear = 0.449, P for overall = 0.004) as well as 1-year all-cause mortality (P for non-linear = 0.909, P for overall = 0.019). The area under the curve of all-cause mortality by various conventional severity of illness scores significantly improved with the addition of the TyG index and TyGVR. The results were basically consistent in subgroup analysis. CONCLUSIONS: Dynamic change of TyG during hospital stay is associated with in-hospital and 1-year all-cause mortality, and may be superior to the effect of baseline TyG index.


Asunto(s)
Enfermedad Crítica , Glucosa , Humanos , Tiempo de Internación , Estudios Retrospectivos , Triglicéridos , Glucemia , Factores de Riesgo , Biomarcadores
17.
Eur J Med Res ; 28(1): 194, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355671

RESUMEN

BACKGROUND: One of the most prominent features of living organisms is their circadian rhythm, which governs a wide range of physiological processes and plays a critical role in maintaining optimal health and function in response to daily environmental changes. This work applied bibliometric analysis to explore quantitative and qualitative trends in circadian rhythm in cardiovascular diseases (CVD). It also aims to identify research hotspots and provide fresh suggestions for future research. METHODS: The Web of Science Core Collection was used to search the data on circadian rhythm in CVD. HistCite, CiteSpace, and VOSviewer were used for bibliometric analysis and visualization. The analysis included the overall distribution of yearly outputs, top nations, active institutions and authors, core journals, co-cited references, and keywords. To assess the quality and efficacy of publications, the total global citation score (TGCS) and total local citation score (TLCS) were calculated. RESULTS: There were 2102 papers found to be associated with the circadian rhythm in CVD, with the overall number of publications increasing year after year. The United States had the most research citations and was the most prolific country. Hermida RC, Young ME, and Ayala DE were the top three writers. The three most notable journals on the subject were Chronobiology International, Hypertension Research, and Hypertension. In the early years, the major emphasis of circadian rhythm in CVD was hormones. Inflammation, atherosclerosis, and myocardial infarction were the top developing research hotspots. CONCLUSION: Circadian rhythm in CVD has recently received a lot of interest from the medical field. These topics, namely inflammation, atherosclerosis, and myocardial infarction, are critical areas of investigation for understanding the role of circadian rhythm in CVD. Although they may not be future research priorities, they remain of significant importance. In addition, how to implement these chronotherapy theories in clinical practice will depend on additional clinical trials to get sufficient trustworthy clinical evidence.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hipertensión , Infarto del Miocardio , Humanos , Ritmo Circadiano , Bibliometría , Inflamación
18.
Foods ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048212

RESUMEN

About 10 major crops basically feed the world. In fact, there are still a large number of plants that have not been fully explored and utilized because they have been ignored by the market and research. The expansion of food sources in various countries plays an important role in maintaining food security and nutrition security in the world. Miwu is the aerial part of the medicinal plant Rhizoma Chuanxiong belonging to a traditional local characteristic food raw material. Its edible value is still little known. Through textual research, component determination, literature survey, field research, and SWOT analysis, this paper has a comprehensive understanding of Miwu's diet history, chemical components, safety risks, and industrial development status. It is found that Miwu has been eaten for 800 years, is rich in nutrients and active ingredients, and has no acute toxicity. In addition, the current industrial development of Miwu has significant advantages and many challenges. To sum up, Miwu is a potentially underutilized food raw material. This paper also provides countermeasures for the industrialized development of Miwu, which will provide a milestone reference for the future utilization and development of Miwu.

19.
Front Cell Dev Biol ; 11: 1146963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035249

RESUMEN

The mitochondrial unfolded protein response (UPRmt) is a stress response pathway that regulates the expression of mitochondrial chaperones, proteases, and other proteins involved in protein folding and degradation, thereby ensuring proper mitochondrial function. In addition to this critical function, the UPRmt also plays a role in other cellular processes such as mitochondrial biogenesis, energy metabolism, and cellular signaling. Moreover, the UPRmt is strongly associated with various diseases. From 2004 to 2022, there has been a lot of interest in UPRmt. The present study aims to utilized bibliometric tools to assess the genesis, current areas of focus, and research trends pertaining to UPRmt, thereby highlighting avenues for future research. There were 442 papers discovered to be related to UPRmt, with the overall number of publications rising yearly. International Journal of Molecular Sciences was the most prominent journal in this field. 2421 authors from 1,402 institutions in 184 nations published studies on UPRmt. The United States was the most productive country (197 documents). The top three authors were Johan Auwerx, Cole M Haynes, and Dongryeol Ryu. The early focus of UPRmt is "protein." And then the UPRmt research shifted from Caenorhabditis elegans back to mammals, and its close link to aging and various diseases. The top emerging research hotspots are neurodegenerative diseases and metabolic diseases. These findings provide the trends and frontiers in the field of UPRmt, and valuable information for clinicians and scientists to identify new perspectives with potential collaborators and cooperative countries.

20.
Curr Probl Cardiol ; 48(8): 101227, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35500730

RESUMEN

Cardio-oncology has grown rapidly worldwide as an emerging interdisciplinary discipline over the past decade. In the present bibliometric review, we employed VOSviewer and Citespace software to describe the literature landscape concerning cardio-oncology from 2010 to 2022. As a result, a total of 1,194 relevant publications were identified in the Web of Science database with an increasing trend. The United States dominated the field during the research period, and Italy, England and Canada had emerged as significant contributors to the study. Ky. Bonnie, Herrmann. Joerg and Fradley. Michael G were the most productive researchers. JACC: CardioOncology was the journal dedicated to the discipline of cardio-oncology and had published the greatest number of papers. Vascular disease and atrial fibrillation have attracted much attention as the main cardiovascular burden. Immune checkpoint inhibitor-specific cardiovascular toxicity, biomarkers and imaging examination together with the prevention of cardio-oncology are potential research hotspots. Notably, basic research is lagging behind, for which more researches are needed to fill the gap. In conclusion, bibliometric analysis provided valuable information for the development of cardio-oncology, which is full of opportunities and challenges.


Asunto(s)
Fibrilación Atrial , Neoplasias , Humanos , Neoplasias/terapia , Bibliometría , Italia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA