Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Clin Transl Oncol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269596

RESUMEN

OBJECTIVE: This study aimed to explore the Liquid-liquid phase separation (LLPS)-related genes associated with the prognosis of bladder cancer (BCa) and assess the potential application of LLPS-related prognostic signature for predicting prognosis in BCa patients. METHODS: Clinical information and transcriptome data of BCa patients were extracted from the Cancer Genome Atlas-BLCA (TCGA-BLCA) database and the GSE13507 database. Furthermore, 108 BCa patients who received treatment at our institution were subjected to a retrospective analysis. The least absolute shrinkage and selection operator (LASSO) analysis was performed to develop an LLPS-related prognostic signature for BCa. The CCK8, wound healing and Transwell assays were performed. RESULTS: Based on 62 differentially expressed LLPS-related genes (DELRGs), three DELRGs were screened by LASSO analysis including kallikrein-related peptidase 5 (KLK5), monoacylglycerol O-acyltransferase 2 (MOGAT2) and S100 calcium-binding protein A7 (S100A7). Based on three DELRGs, a novel LLPS-related prognostic signature was constructed for individualized prognosis assessment. Kaplan-Meier curve analyses showed that LLPS-related prognostic signature was significantly correlated with overall survival (OS) of BCa. ROC analyses demonstrated the LLPS-related prognostic signature performed well in predicting the prognosis of BCa patients in the training group (the area under the curve (AUC) = 0.733), which was externally verified in the validation cohort 1 (AUC = 0.794) and validation cohort 2 (AUC = 0.766). Further experiments demonstrated that inhibiting KLK5 could affect the proliferation, migration, and invasion of BCa cells. CONCLUSIONS: In this study, a novel LLPS-related prognostic signature was successfully developed and validated, demonstrating strong performance in predicting the prognosis of BCa patients.

2.
Sci Rep ; 14(1): 17969, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095413

RESUMEN

The coronavirus disease-2019 (COVID-19) pandemic has impaired the quality of life (QoL) for many due to its extensive impacts. However, few studies have addressed the specific impact of COVID-19 on the mental health of adolescents, particularly post-traumatic stress disorder (PTSD). This study considered the impact of COVID-19-related PTSD on the QoL of adolescents in China, the mediating effects of insomnia, and the moderating effects of resilience. Participants included 50,666 adolescents aged 12-18 years selected using a comprehensive sampling method. We performed data collection from January 8th to January 18th, 2023, using the Children's Revised Impact of Event Scale, Pittsburgh Sleep Quality Index, Ten-item Connor-Davidson Resilience Scale, and Screening for and Promotion of Health-related QoL in Children and Adolescents Questionnaire for data collection. Male adolescents exhibited significantly lower levels of PTSD and insomnia compared to females and scored significantly higher in psychological resilience and overall QoL. Insomnia played a mediating role between PTSD and QoL. Psychological resilience moderated the impact of COVID-19-related stress on adolescents' QoL through its influence on insomnia. PTSD resulting from the COVID-19 pandemic affects the QoL of adolescents through the presence of insomnia. Psychological resilience plays a moderating role in this process. Cultivating psychological resilience in adolescents can effectively enhance their ability to cope with the impacts of sudden public events.


Asunto(s)
COVID-19 , Calidad de Vida , Resiliencia Psicológica , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos por Estrés Postraumático , Humanos , Adolescente , COVID-19/psicología , COVID-19/epidemiología , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/epidemiología , Trastornos del Inicio y del Mantenimiento del Sueño/psicología , Masculino , Femenino , Niño , China/epidemiología , Encuestas y Cuestionarios , SARS-CoV-2 , Pandemias
3.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39204119

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.

5.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961317

RESUMEN

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Asunto(s)
Depresión , Habénula , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Habénula/metabolismo , Habénula/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Masculino , Depresión/metabolismo , Neuralgia/metabolismo , Neuralgia/psicología , Ratones Endogámicos C57BL , Dolor Crónico/metabolismo , Dolor Crónico/psicología , Canales de Potasio
6.
Sci Total Environ ; 948: 174870, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029755

RESUMEN

OBJECTIVE: Polychlorinated biphenyls (PCBs) have caused great environmental concerns. The study aims to investigate underlying molecular mechanisms between PCBs exposure and prostate cancer (PCa). METHODS: To investigate the association between PCBs exposure and prostate cancer by using CTD, TCGA, and GEO datasets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to explore pathways associated with PCBs-related genes (PRGs). Using Lasso regression analysis, a novel PCBs-related prognostic model was developed. Both internal and external validations were conducted to assess the model's validity. Molecular docking was utilized to assess the binding capacity of PCBs to crucial genes. At last, preliminary experimental validations were conducted to confirm the biological roles of Aroclor 1254 in PCa cells. RESULTS: The GO enrichment analysis of PRGs revealed that the biological processes were most enriched in the regulation of transcription from the RNA polymerase II promoter and signal transduction. The KEGG enrichment analysis showed that of the pathways in cancer is the most significantly enriched. Next, a PCBs-related model was constructed. In the training, test, GSE70770, and GSE116918 cohorts, the biochemical recurrences free survival of the patients with high-risk scores was considerably lower. The AUCs at 5 years were 0.691, 0.718, 0.714, and 0.672 in the four cohorts, demonstrating the modest predictive ability. A nomogram that incorporated clinical characteristics was constructed. The results of the anti-cancer drug sensitivity analysis show chemotherapy might be more beneficial for patients at low risk. The molecular docking analysis demonstrated PCBs' ability to bind to crucial genes. PCa cells exposed to Aroclor 1254 at a concentration of 1 µM showed increased proliferation and invasion capabilities. CONCLUSIONS: This study provides new insights into the function of PCBs in PCa and accentuates the need for deeper exploration into the mechanistic links between PCBs exposure and PCa progression.


Asunto(s)
Contaminantes Ambientales , Simulación del Acoplamiento Molecular , Bifenilos Policlorados , Neoplasias de la Próstata , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/genética , Humanos , Masculino , Bifenilos Policlorados/toxicidad , Contaminantes Ambientales/toxicidad , Progresión de la Enfermedad , Exposición a Riesgos Ambientales
7.
Cancer Med ; 13(14): e70001, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031016

RESUMEN

PURPOSE: The aim of this study was to assess the potential application of a radiomics features-based nomogram for predicting therapeutic responses to neoadjuvant chemohormonal therapy (NCHT) in patients with high-risk non-metastatic prostate cancer (PCa). METHODS: Clinicopathologic information was retrospectively collected from 162 patients with high-risk non-metastatic PCa receiving NCHT and radical prostatectomy at our center. The postoperative pathological findings were used as the gold standard for evaluating the efficacy of NCHT. The least absolute shrinkage and selection operator (LASSO) was conducted to develop radiomics signature. Multivariate logistic regression analyses were conducted to identify the predictors of a positive pathological response to NCHT, and a nomogram was constructed based on these predictors. RESULTS: Sixty-three patients (38.89%) experienced positive pathological response to NCHT. Receiver operating characteristic analyses showed that the area under the curve (AUC) of periprostatic fat (PPF) radiomics signature was 0.835 (95% CI, 0.754-0.898), while the AUC of intratumoral radiomics signature was 0.822 (95% CI, 0.739-0.888). Multivariate logistic regression analysis revealed that PSA level, PPF radiomics signature and intratumoral radiomics signature were independent predictors of positive pathological response. A nomogram based on these three predictors was constructed. The AUC was 0.908 (95% CI, 0.839-0.954). The Hosmer-Lemeshow goodness-of-fit test showed that the nomogram was well calibrated. Decision curve analysis revealed the favorable clinical practicability of the nomogram. The nomogram was successfully validated in the validation cohort. Kaplan-Meier analyses showed that nomogram and positive pathological response were significantly related with survival of PCa. CONCLUSION: The radiomics-clinical nomogram based on mpMRI radiomics features exhibited superior predictive ability for positive pathological response to NCHT in high-risk non-metastatic PCa.


Asunto(s)
Imagen por Resonancia Magnética , Terapia Neoadyuvante , Nomogramas , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Resultado del Tratamiento , Curva ROC , Radiómica
8.
Int Immunopharmacol ; 138: 112623, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991630

RESUMEN

OBJECTIVE: Bladder cancer (BCa) is a highly lethal urological malignancy characterized by its notable histological heterogeneity. Autophagy has swiftly emerged as a diagnostic and prognostic biomarker in diverse cancer types. Nonetheless, the currently accessible autophagy-related signature specific to BCa remains limited. METHODS: A refined autophagy-related signature was developed through a 10-fold cross-validation framework, incorporating 101 combinations of machine learning algorithms. The performance of this signature in predicting prognosis and response to immunotherapy was thoroughly evaluated, along with an exploration of potential drug targets and compounds. In vitro and in vivo experiments were conducted to verify the regulatory mechanism of hub gene. RESULTS: The autophagy-related prognostic signature (ARPS) has exhibited superior performance in predicting the prognosis of BCa compared to the majority of clinical features and other developed markers. Higher ARPS is associated with poorer prognosis and reduced sensitivity to immunotherapy. Four potential targets and five therapeutic agents were screened for patients in the high-ARPS group. In vitro and vivo experiments have confirmed that FKBP9 promotes the proliferation, invasion, and metastasis of BCa. CONCLUSIONS: Overall, our study developed a valuable tool to optimize risk stratification and decision-making for BCa patients.


Asunto(s)
Autofagia , Aprendizaje Automático , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/patología , Humanos , Pronóstico , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Medicina de Precisión , Inmunoterapia/métodos , Regulación Neoplásica de la Expresión Génica , Ratones , Medición de Riesgo
10.
Phytomedicine ; 131: 155771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851101

RESUMEN

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Asunto(s)
Cardiomiopatías , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Cardiomiopatías/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Ratones , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Lipoilación/efectos de los fármacos , Ratas , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Lipopolisacáridos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo
11.
Ann Surg Oncol ; 31(9): 5794-5803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824192

RESUMEN

BACKGROUND: This study was designed to develop an innovative classification and guidance system for renal hilar tumors and to assess the safety and effectiveness of robot-assisted partial nephrectomy (RAPN) for managing such tumors. METHODS: A total of 179 patients undergoing RAPN for renal hilar tumors were retrospectively reviewed. A novel classification system with surgical techniques was introduced and the perioperative features, tumor characteristics, and the efficacy and safety of RAPN were compared within subgroups. RESULTS: We classified the tumors according to our novel system as follows: 131 Type I, 35 Type II, and 13 Type III. However, Type III had higher median R.E.N.A.L., PADUA, and ROADS scores compared with the others (all p < 0.001), indicating increased operative complexity and higher estimated blood loss [180.00 (115.00-215.00) ml]. Operative outcomes revealed significant disparities between Type III and the others, with longer operative times [165.00 (145.00-200.50) min], warm ischemia times [24.00 (21.50-30.50) min], tumor resection times [13.00 (12.00-15.50) min], and incision closure times [22.00 (20.00-23.50) min] (all p < 0.005). Postoperative outcomes also showed significant differences, with longer durations of drain removal (77.08 ± 18.16 h) and hospitalization for Type III [5.00 (5.00-6.00) d] (all p < 0.05). Additionally, Type I had a larger tumor diameter than the others (p = 0.009) and pT stage differed significantly between the subtypes (p = 0.020). CONCLUSIONS: The novel renal hilar tumor classification system is capable of differentiating the surgical difficulty of RAPN and further offers personalized surgical steps tailored to each specific classification. It provides a meaningful tool for clinical practice.


Asunto(s)
Neoplasias Renales , Nefrectomía , Procedimientos Quirúrgicos Robotizados , Humanos , Neoplasias Renales/cirugía , Neoplasias Renales/clasificación , Neoplasias Renales/patología , Femenino , Masculino , Nefrectomía/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Procedimientos Quirúrgicos Robotizados/métodos , Estudios de Seguimiento , Anciano , Tempo Operativo , Pronóstico , Complicaciones Posoperatorias/clasificación , Complicaciones Posoperatorias/etiología , Tiempo de Internación/estadística & datos numéricos , Adulto , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/clasificación , Isquemia Tibia , Pérdida de Sangre Quirúrgica/estadística & datos numéricos
12.
Pharmacol Rev ; 76(5): 846-895, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866561

RESUMEN

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.


Asunto(s)
Enfermedades Cardiovasculares , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Humanos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Gasotransmisores/metabolismo
13.
Int J Clin Pharmacol Ther ; 62(9): 395-401, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38920082

RESUMEN

OBJECTIVES: To investigate the expression of P-glycoprotein in T-cell subpopulations of lymphocytes from adult patients with refractory glomerulonephritis (GN). MATERIALS AND METHODS: Flow cytometry was used to analyze the T-cell subpopulations of lymphocytes from adult patients with refractory GN and healthy individuals. The CD243 antibody marked the membrane P-glycoprotein of immune cells. RESULTS: The mean ± standard deviation (SD) values of percentages of CD3+, CD3+CD4+, CD3+CD8+ cells in lymphocytes from patients with refractory GN were 63.94 ± 26.98, 55.16 ± 4.78, and 37.79 ± 6.01%, respectively. These values in healthy individuals were 74.88 ± 3.75, 56.60 ± 9.22, and 34.20 ± 5.21%, respectively. No significant differences were observed between the patients with refractory GN and healthy individuals. The mean ± SD values of percentages of CD3+CD4+CD243+ and CD3+CD8+CD243+ cells in the lymphocytes of patients with refractory GN were 0.14 ± 0.11 and 0.11 ± 0.07%, respectively. These values in healthy individuals were 0.05 ± 0.02 and 0.04 ± 0.02%, respectively. The difference in CD3+CD8+CD243+ percentage between patients with refractory GN and healthy individuals was significant (p = 0.0216). CONCLUSION: These findings suggest that P-glycoprotein expression on CD3+CD8+ T cells is a promising marker and a suitable target of drug resistance in patients with refractory GN.


Asunto(s)
Glomerulonefritis , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Glomerulonefritis/inmunología , Glomerulonefritis/metabolismo , Citometría de Flujo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Estudios de Casos y Controles , Adulto Joven , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
14.
Front Bioeng Biotechnol ; 12: 1367929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832128

RESUMEN

Introduction: Surface electromyogram (sEMG) signals have been widely used in human upper limb force estimation and motion intention recognition. However, the electrocardiogram(ECG) artifact generated by the beating of the heart is a major factor that reduces the quality of the EMG signal when recording the sEMG signal from the muscle close to the heart. sEMG signals contaminated by ECG artifacts are difficult to be understood correctly. The objective of this paper is to effectively remove ECG artifacts from sEMG signals by a novel method. Methods: In this paper, sEMG and ECG signals of the biceps brachii, brachialis, and triceps muscle of the human upper limb will be collected respectively. Firstly, an improved multi-layer wavelet transform algorithm is used to preprocess the raw sEMG signal to remove the background noise and power frequency interference in the raw signal. Then, based on the theory of blind source separation analysis, an improved Fast-ICA algorithm was constructed to separate the denoising signals. Finally, an ECG discrimination algorithm was used to find and eliminate ECG signals in sEMG signals. This method consists of the following steps: 1) Acquisition of raw sEMG and ECG signals; 2) Decoupling the raw sEMG signal; 3) Fast-ICA-based signal component separation; 4) ECG artifact recognition and elimination. Results and discussion: The experimental results show that our method has a good effect on removing ECG artifacts from contaminated EMG signals. It can further improve the quality of EMG signals, which is of great significance for improving the accuracy of force estimation and motion intention recognition tasks. Compared with other state-of-the-art methods, our method can also provide the guiding significance for other biological signals.

15.
J Gastrointestin Liver Dis ; 33(2): 269-277, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944855

RESUMEN

Colorectal cancer is a prevalent malignancy, with advanced and metastatic forms exhibiting poor treatment outcomes and high relapse rates. To enhance patient outcomes, a comprehensive understanding of the pathophysiological processes and the development of targeted therapies are imperative. The high heterogeneity of colorectal cancer demands precise and personalized treatment strategies. Colorectal cancer organoids, a three-dimensional in vitro model, have emerged as a valuable tool for replicating tumor biology and exhibit promise in scientific research, disease modeling, drug screening, and personalized medicine. In this review, we present an overview of colorectal cancer organoids and explore their applications in research and personalized medicine, while also discussing potential future developments in this field.


Asunto(s)
Neoplasias Colorrectales , Organoides , Medicina de Precisión , Humanos , Organoides/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Animales
16.
Reprod Sci ; 31(9): 2641-2653, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38700824

RESUMEN

Cervical cancer (CC) is one of the most common cancers that threaten the life of women. More and more circular RNAs (circRNAs) have been found to be maladjusted in tumor tissues. However, the mechanism of circ_TMCO3 in CC needs to be studied. In this study, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry (IHC) were used to detect the expressions of circ_TMCO3, miR-1291, and FERM domain-containing protein 6 (FRMD6). Cell viability, proliferation, apoptosis, migration, invasion, and protein level were detected via 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and western blot, respectively. The glycolysis level was detected via specific kits. Dual-luciferase activity assay was used to analyze the targeted relationship between miR-1291 and circ_TMCO3 or FRMD6. Xenograft models were used to analyze the effect of circ_TMCO3 on the growth of CC tumors in vivo. Circ_TMCO3 and FRMD6 were low expressed in tumor tissues, and miR-1291 was conspicuously upregulated in tumor tissues. Upregulation of circ_TMCO3 dramatically curbed cell viability, proliferation, migration, and invasion, and enhanced cell apoptosis, while those effects were attenuated after the overexpression of miR-1291. MiR-1291 could directly target FRMD6, and knockdown of FRMD6 could restore the inhibitory effect of miR-1291 silencing on tumor cell growth. In terms of mechanism, circ_TMCO3 was confirmed as a miR-1291 sponge to regulate the expression of FRMD6. Tumor growth was markedly retarded with the overexpression of circ_TMCO3. In conclusion, circ_TMCO3 inhibited tumorigenicity of CC via miR-1291/FRMD6 axis, providing a potential therapeutic strategy for CC patients.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Neoplasias del Cuello Uterino , MicroARNs/metabolismo , MicroARNs/genética , Femenino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , ARN Circular/genética , ARN Circular/metabolismo , Animales , Ratones , Apoptosis , Ratones Desnudos , Línea Celular Tumoral , Movimiento Celular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Progresión de la Enfermedad , Ratones Endogámicos BALB C
17.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712735

RESUMEN

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Asunto(s)
Transportador de Cobre 1 , Neoplasias de la Vejiga Urinaria , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , Progresión de la Enfermedad , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Mutación , Pronóstico , Regiones Promotoras Genéticas , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
18.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821160

RESUMEN

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Cafeicos , Lipopolisacáridos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Succinatos , Animales , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Masculino , Succinatos/farmacología , Succinatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Glucólisis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Activación de Macrófagos/efectos de los fármacos
19.
Neurochem Int ; 177: 105764, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729355

RESUMEN

Increasing evidence supported that oxidative stress induced by herniated lumbar disc played important role in the formation of lumbar disc herniation sciatica (LDHS), however, the neural mechanisms underlying LDHS need further clarification. Endomorphin-2 (EM2) is the endogenous ligand for mu-opioid receptor (MOR), and there is increasing evidence implicating the involvement of spinal EM2 in neuropathic pain. In this study, using an nucleus pulposus implantation induced LDHS rat model that displayed obvious mechanical allodynia, it was found that the expression of EM2 in dorsal root ganglion (DRG) and spinal cord was significantly decreased. It was further found that oxidative stress in DRG and spinal cord was significantly increased in LDHS rats, and the reduction of EM2 in DRG and spinal cord was determined by oxidative stress dominated increment of dipeptidylpeptidase IV activity. A systemic treatment with antioxidant could prevent the forming of mechanical allodynia in LDHS rats. In addition, MOR expression in DRG and spinal cord remained unchanged in LDHS rats. Intrathecal injection of MOR antagonist promoted pain behavior in LDHS rats, and the analgesic effect of intrathecal injection of EM2 was stronger than that of endomorphin-1 and morphine. Taken together, our findings suggest that oxidative stress mediated decrement of EM2 in DRG and spinal cord causes the loss of endogenous analgesic effects and enhances the pain sensation of LDHS.


Asunto(s)
Desplazamiento del Disco Intervertebral , Oligopéptidos , Estrés Oxidativo , Ratas Sprague-Dawley , Ciática , Animales , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos , Desplazamiento del Disco Intervertebral/metabolismo , Ratas , Oligopéptidos/farmacología , Ciática/metabolismo , Ciática/tratamiento farmacológico , Masculino , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Vértebras Lumbares , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Receptores Opioides mu/metabolismo
20.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727158

RESUMEN

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Asunto(s)
Inflamación , Mercurio , Fosfohidrolasa PTEN , Humanos , Regulación hacia Abajo , Células HEK293 , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/sangre , Mercurio/toxicidad , Exposición Profesional/efectos adversos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...