Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioresour Bioprocess ; 11(1): 61, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916814

RESUMEN

Phospholipase A1 (PLA1) is a kind of specific phospholipid hydrolase widely used in food, medical, textile. However, limitations in its expression and enzymatic activity have prompted the investigation of the phospholipase-assisting protein PlaS. In this study, we elucidate the role of PlaS in enhancing the expression and activity of PlaA1 through N-terminal truncation. Our research demonstrates that truncating the N-terminal region of PlaS effectively overcomes its inhibitory effect on host cells, resulting in improved cell growth and increased protein solubility of the protein. The yeast two-hybrid assay confirms the interaction between PlaA1 and N-terminal truncated PlaS (∆N27 PlaS), highlighting their binding capabilities. Furthermore, in vitro studies using Biacore analysis reveal a concentration-dependent and specific binding between PlaA1 and ∆N27 PlaS, exhibiting high affinity. Molecular docking analysis provides insights into the hydrogen bond interactions between ∆N27 PlaS and PlaA1, identifying key amino acid residues crucial for their binding. Finally, the enzyme activity of PLA1 was boost to 8.4 U/mL by orthogonal test. Study significantly contributes to the understanding of the interaction mechanism between PlaS and PlaA1, offering potential strategies for enhancing PlaA1 activity through protein engineering approaches.

2.
Synth Syst Biotechnol ; 9(3): 436-444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38616975

RESUMEN

The production of androst-4-ene-3,17-dione (AD) by the steroidal microbial cell factory requires transcription factors (TFs) to participate in metabolic regulation. However, microbial cell factory lacks effective TFs that can respond to AD in its metabolic pathway. Additionally, finding and obtaining natural TFs that specifically respond to AD is a complex and onerous task. In this study, we devised an artificial TF that responds to AD, termed AdT, based on structure-guided molecular dynamics (MD) simulation. According to MD analysis of the conformational changes of AdT after binding to AD, an LBD in which the N- and C-termini exhibited convergence tendencies was used as a microswitch to guide the assembly of a DNA-binding domain lexA, a linker (GGGGS)2, and a transcription activation domain B42 into an artificial TF. As a proof of design, a AD biosensor was designed and constructed in yeast on the basis of the ligand-binding domain (LBD) of hormone receptor. In addition, the transcription factor activity of AdT was increased by 1.44-fold for its variant F320Y. Overall, we created non-natural TF elements for AD microbial cell factory, and expected that the design TF strategy will be applied to running in parallel to the signaling machinery of the host cell.

3.
World J Microbiol Biotechnol ; 40(1): 8, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938463

RESUMEN

Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.


Asunto(s)
Biotecnología , Ingeniería Metabólica , Vitamina K 2
4.
PLoS One ; 18(10): e0286957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788272

RESUMEN

Highland barley (Hordeum vulgare L. var. nudum) is a grain crop that grows on the plateau under poor and high salt conditions. Therefore, to cultivate high-quality highland barley varieties, it is necessary to study the molecular mechanism of strong resistance in highland barley, which has not been clearly explained. In this study, a high concentration of NaCl (240 mmol/L), simulating the unfavorable environment, was used to spray the treated highland barley seeds. Transcriptomic analysis revealed that the expression of more than 8,000 genes in highland barley seed cells was significantly altered, suggesting that the metabolic landscape of the cells was deeply changed under salt stress. Through the KEGG analysis, the phenylpropane metabolic pathway was significantly up-regulated under salt stress, resulting in the accumulation of polyphenols, flavonoids, and lignin, the metabolites for improving the stress resistance of highland barley seed cells, being increased 2.71, 1.22, and 1.17 times, respectively. This study discovered that the phenylpropane metabolic pathway was a significant step forward in understanding the stress resistance of highland barley, and provided new insights into the roles of molecular mechanisms in plant defense.


Asunto(s)
Hordeum , Hordeum/metabolismo , Estrés Salino/genética , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética
5.
Appl Microbiol Biotechnol ; 107(21): 6497-6506, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37682299

RESUMEN

The whole-cell catalysis strategy of alpha-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) using recombinant Escherichia coli, in which L-glutamate oxidase (LGox) was over-expressed, has replaced the traditional chemical synthesis strategy. However, large amounts of toxic by-product, H2O2, should be eliminated through co-expressing catalase (Cat), thus severely increasing burden in cells. To efficiently and economically produce α-KG, here, the genes SpLGox (from Streptomyces platensis NTU3304) and SlCat (from Streptomyces lividans TK24) were inserted into the low-dosage-IPTG (Isopropyl ß-D-Thiogalactoside) inducible expression system, constructed in our previous work, in E. coli, respectively. Besides, a double-strain catalysis system was established and optimized to produce α-KG, and the productivity of α-KG was increased 97% compared with that through single strain catalysis. Finally, a double-strain cultivation strategy was designed and employed to simplify the scale-up fermentation. Using the optimized whole-cell biocatalyst conditions (pH 7.0, 35 °C), majority of the L-glutamic acid was transformed into α-KG and the titer reached 95.4 g/L after 6 h with the highest productivity at present. Therefore, this strategy may efficiently and cost-effectively produce α-KG, enhancing its potential for industrial applications. KEY POINTS: • SpLGox and SlCat were over-expressed to catalyze L-Glu to α-KG and eliminate by-product H2O2, respectively. • Double-strain cultivation and catalysis system can efficiently and cost-effectively produce α-KG from L-Glu.

6.
Int J Biol Macromol ; 253(Pt 3): 126776, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37699461

RESUMEN

Phospholipase A1 (PlaA) plays a pivotal role in diverse applications within the food and biochemical medical industries. Herein, we investigate the impact of the accessory protein encoded by plaS from Serratia marcescens on PlaA activity in Escherichia coli. Notably, PlaS demonstrates the ability to enhance PlaA activity while concurrently exhibiting inhibitory effects on the growth of E. coli BL21 (DE3). Our study revolves around probing the inhibitory action of PlaS on E. coli BL21 (DE3). PlaS exhibits a propensity to heighten both the permeability of outer and inner cell membranes, leading to concomitant reductions in membrane fluidity and surface hydrophobicity. This phenomenon is validated through scanning electron microscopy (SEM) analysis, which highlights PlaS's capacity to compromise membrane integrity. Moreover, through a comprehensive comparative transcriptomic sequencing approach, we identify four down-regulated genes (galM, ybhC, ldtC, and kdpB) alongside two up-regulated genes (rbsB and degP). These genes are intricately associated with processes such as cell membrane synthesis and modification, energy metabolism, and transmembrane transport. Our investigation unveils the intricate gene-level mechanisms underpinning PlaS-mediated growth inhibition and membrane disruption. Consequently, our findings serve as a significant reference for the elucidation of membrane protein mechanisms, shedding light on potential avenues for future exploration.


Asunto(s)
Escherichia coli , Serratia marcescens , Serratia marcescens/genética , Serratia marcescens/metabolismo , Permeabilidad de la Membrana Celular , Ácidos Grasos/metabolismo , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
7.
World J Microbiol Biotechnol ; 39(8): 224, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291450

RESUMEN

Menaquinone-7 (MK-7), a valuable member of the vitamin K2 series, is an essential nutrient for humans. It is used for treating coagulation disorders, and osteoporosis, promoting liver function recovery, and preventing cardiovascular diseases. In this study, to further improve the metabolic synthesis of MK-7 by the mutant strain, the effect of surfactants on the metabolic synthesis of MK-7 by the mutant strain Bacillus subtilis 168 KO-SinR (BS168 KO-SinR) was analyzed. The scanning electron microscopy and flow cytometry results showed that the addition of surfactants changed the permeability of the cell membrane of the mutant strain and the structural components of the biofilm. When 0.7% Tween-80 was added into the medium, the extracellular and intracellular synthesis of MK-7 reached 28.8 mg/L and 59.2 mg/L, respectively, increasing the total synthesis of MK-7 by 80.3%. Quantitative real-time PCR showed that the addition of surfactant significantly increased the expression level of MK-7 synthesis-related genes, and the electron microscopy results showed that the addition of surfactant changed the permeability of the cell membrane. The research results of this paper can serve as a reference for the industrial development of MK-7 prepared by fermentation.


Asunto(s)
Bacillus subtilis , Tensoactivos , Humanos , Vitamina K 2/metabolismo , Fermentación , Bacillus subtilis/metabolismo , Tensoactivos/metabolismo , Biopelículas
8.
Enzyme Microb Technol ; 166: 110228, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940599

RESUMEN

In order to excavate microbial epoxide hydrolases (EHs) with desired catalytic properties, a novel EH, SfEH1, was identified based on the genome annotation of Streptomyces fradiae and sequence alignment analysis with local protein library. The SfEH1-encoding gene, sfeh1, was then cloned and over-expressed in soluble form in Escherichia coli/BL21(DE3). The optimal temperature and pH of recombinant SfEH1 (reSfEH1) and reSfEH1-expressing E. coli (E. coli/sfeh1) were both determined as 30 â„ƒ and 7.0, also indicating that the influences of temperature and pH on reSfEH1's activities were more obvious than those of E. coli/sfeh1 whole cells. Subsequently, using E. coli/sfeh1 as catalyst, its catalytic properties towards thirteen common mono-substituted epoxides were tested, in which E. coli/sfeh1 had the highest activity of 28.5 U/g dry cells for rac-1,2-epoxyoctane (rac-6a), and (R)-1,2-pentanediol ((R)-3b) (or (R)-1,2-hexanediol ((R)-4b)) with up to 92.5% (or 94.1%) eep was obtained at almost 100% conversion ratio. Regioselectivity coefficients (αS and ßR) displayed in the enantioconvergent hydrolysis of rac-3a (or rac-4a) were calculated to be 98.7% and 93.8% (or 95.2% and 98.9%). Finally, the reason of the high and complementary regioselectivity was confirmed by both kinetic parameter analysis and molecular docking simulations.


Asunto(s)
Epóxido Hidrolasas , Escherichia coli , Simulación del Acoplamiento Molecular , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Compuestos Epoxi/química
9.
ACS Omega ; 8(3): 3520-3529, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713735

RESUMEN

Isodon suzhouensis from Suzhou, China, is a traditional Chinese herb with wide applications in medicine and food. The antioxidant activity against oxidative stress of the leaves of Isodon suzhouensis is a myth since long and is not explored earlier thoroughly. The present study is focused to explore the active components in Isodon suzhouensis leaf extracts responsible for antioxidant effects against oxidative stress and the potential mechanism of this activity. We obtained the chromatograms of Isodon suzhouensis leaf extracts by the high-performance liquid phase (HPLC) for possible detection of antioxidant constituents. Some compounds in Isodon suzhouensis leaf extracts were then further assessed through the luminol luminescence mechanism combined with HPLC analysis as well as with SwissTargetPrediction database that helped to screen out the other constituents. The targets for effects against oxidative stress were then further screened through the GeneCards database, and the PPI network was constructed. The targets were analyzed by GO and KEGG using the David database. The obtained results were then further studied by employing in vitro experimentation and protein expression analyses by Western blotting. It is found that Isodon suzhouensis leaf extracts contain rutin, isoquercetin, glaucocalyxin A, glaucocalyxin B, and other compounds with antioxidant activity. The activity map of the free radical scavenging signals from Isodon suzhouensis showed a strong ability to scavenge free radicals with the highest capacity of glaucocalyxin B followed by isoquercetin succeeding the glaucocalyxin A supervening the rutin. Further network pharmacological analyses and in vitro experimentation showed that Isodon suzhouensis leaf extracts interfere with TNF and the p38 MAPK signaling pathway for antioxidant effects against oxidative stress. Conclusively, it is found that Isodon suzhouensis leaf extracts possess strong antioxidant potential via targeting TNF and p38 MAPK signaling pathways against oxidative stress, providing scientific foundation for further studies on Isodon suzhouensis for the further therapeutic approach.

10.
ACS Synth Biol ; 11(12): 4156-4170, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36416371

RESUMEN

As a natural biological macromolecule, γ-polyglutamic acid (γ-PGA) plays a significant role in medicine, food, and cosmetic industries owing to its unique properties of biocompatibility, biodegradability, water solubility, and viscosity. Although many strategies have been adopted to increase the yield of γ-PGA in Bacillus subtilis, the effectiveness of these common approaches is not high because the strong viscosity affects cell growth. However, dynamic regulation based on quorum sensing (QS) has been extensively applied as a fundamental tool for fine-tuning gene expression in reaction to changes in cell density without adding expensive inducers. A modular PhrQ-RapQ-DegU QS system is developed based on promoter PD4, which is upregulated by phosphorylated DegU (DegU-P). In this study, first, we analyzed the DegU-based gene expression regulation system in B. subtilis 168. We constructed a promoter library of different abilities, selected suitable promoters from the library, and performed mutation screening on the selected promoters and degU region. Furthermore, we constructed a PhrQ-RapQ-DegU QS system to dynamically control the synthesis of γ-PGA in BS168. Cell growth and efficient synthesis of the target product can be dynamically balanced by the QS system. Our dynamic adjustment approach increased the yield of γ-PGA to 6.53-fold of that by static regulation in a 3 L bioreactor, which verified the effectiveness of this strategy. In summary, the PhrQ-RapQ-DegU QS system has been successfully integrated with biocatalytic functions to achieve dynamic metabolic pathway control in BS168, which can be stretched to a large number of microorganisms to fine-tune gene expression and enhance the production of metabolites.


Asunto(s)
Bacillus subtilis , Ácido Poliglutámico , Bacillus subtilis/metabolismo , Percepción de Quorum/genética , Ácido Glutámico/metabolismo
11.
Microb Pathog ; 168: 105574, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561981

RESUMEN

Vibrio parahaemolyticus (V. parahaemolyticus) is a common pathogen in seafood. The use of antibiotics is a primary tool to prevent and control V. parahaemolyticus in the aquaculture industry. However, V. parahaemolyticus combats the damage caused by antibiotics by forming biofilms under certain conditions. In this study, we analyzed the antibacterial effect and the characteristics of V. parahaemolyticus by experimentally determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) values of a combination of the Litsea cubeba essential oil (LCEO) and several commonly used V. parahaemolyticus antibiotics. The bactericidal effect of the essential oil alone and essential oil in combination with the antibiotics were evaluated with time-kill curves. The damage to cell membranes and cell walls were assessed by measuring the content of macromolecules and alkaline phosphatase (AKP) released into the supernatant using V. parahaemolyticus ATCC17802 as the experimental strain. The membrane structure was observed by transmission electron microscopy. The results showed that the MIC value of the LCEO was 1,024 µg/mL, and the LCEO FICI values in combination with tetracycline or oxytetracycline hydrochloride was 0.3125 and 0.75, respectively, indicating synergistic and additive effects. Moreover, LCEO inhibited the growth and promoted the removal of biofilms by reducing the content of hydrophobic and extracellular polysaccharides on the cell surface. This study provides a reference for studying the antibacterial activity of LCEO and the combination of antibiotics to prevent and control the formation of biofilms by V. parahaemolyticus.


Asunto(s)
Litsea , Aceites Volátiles , Vibrio parahaemolyticus , Antibacterianos/farmacología , Biopelículas , Litsea/química , Aceites Volátiles/farmacología
12.
Microorganisms ; 10(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35056543

RESUMEN

To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 µg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.

13.
Food Chem ; 373(Pt B): 131482, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34731817

RESUMEN

Premna microphylla Turcz. is a commonly used traditional Chinese medicine totreatdysentery and appendicitis. Present study is focused to explore antioxidants and other compounds in the Premna microphylla Turcz. stem. Assessment of chemical composition was done with high sensitivity UPLC-LTQ-Orbitrap-MS and for Separation Thermo Hypersil Gold (100 mm × 2.1 mm, 1.9 µm) was used while electrospray ionization (ESI) was used for the mass spectrometry. 18 compounds were identified including Vitexin (1), Schaftoside (2), Vicenin-2 (3), Apigenin-6, 8-di-C-arabinoside (4), Apigenin-7-O-ß-d-glucoside (5), Carnosic acid (6), Apigenin-8-C-ß-d-xylopyranoside (7), Prostratin (8), Aurantio-obtusin-ß-d-glucoside (9), Royleanone (10), 5-hydroxy-7,3',4'-Trimethoxy flavonols (11), 6-Hydroxy-5,6-dehydrosugiol (12), 14-deoxycoleon (13), Arucadiol (14), Obtusinone-B (15), Trehalose (16), Citric acid (17) and Betaine (18). Among these, 6 compounds including (6), (8), (9), (16), (17) and (18) were identified first time within this genus and plant. Study highlights the importance of Premna microphylla Turcz. stem extract for strong therapeutic potential against oxidation-related diseases.


Asunto(s)
Antioxidantes , Lamiaceae , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Medicina Tradicional China , Fitoquímicos , Espectrometría de Masa por Ionización de Electrospray
14.
Bioresour Bioprocess ; 9(1): 123, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647873

RESUMEN

Neomycin, an aminoglycoside antibiotic with broad-spectrum antibacterial resistance, is widely used in pharmaceutical and agricultural fields. However, separation and purification of neomycin B as an active substance from Streptomyces fradiae are complicated. Although NeoN can catalyze conversion of neomycin C to neomycin B, the underlying catalytic mechanism is still unclear. In this study, the genomic information of high-yielding mutant S. fradiae SF-2 was elucidated using whole-genome sequencing. Subsequently, the mechanism of NeoN in catalyzing conversion of neomycin C to neomycin B was resolved based on NeoN-SAM-neomycin C ternary complex. Mutant NeoNV252A showed improved NeoN activity, and the recombinant strain SF-2-NeoNV252A accumulated 16,766.6 U/mL neomycin B, with a decrease in neomycin C ratio from 16.1% to 6.28%, when compared with the parental strain SF-2. In summary, this study analyzed the catalytic mechanism of NeoN, providing significant reference for rational design of NeoN to improve neomycin B production and weaken the proportion of neomycin C.

15.
Front Mol Biosci ; 8: 702083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34291089

RESUMEN

Isocitrate dehydrogenase (IDH) family of proteins is classified into three subfamilies, namely, types I, II, and III. Although IDHs are widely distributed in bacteria, archaea, and eukaryotes, all type III IDHs reported to date are found only in prokaryotes. Herein, a novel type III IDH subfamily member from the marine microalga Phaeodactylum tricornutum (PtIDH2) was overexpressed, purified, and characterized in detail for the first time. Relatively few eukaryotic genomes encode this type of IDH and PtIDH2 shares the highest homology with marine bacterial monomeric IDHs, suggesting that PtIDH2 originated through a horizontal gene transfer event between a marine alga and a bacterium. Size-exclusion chromatography revealed that the native PtIDH2 is a homotetramer (∼320 kDa) in solution, comprising four monomeric IDH-like subunits (80 kDa each). Enzymatic characterization showed that PtIDH2 is a bivalent metal ion-dependent enzyme and Mn2+ is the optimal activator. The recombinant PtIDH2 protein exhibited maximal activity at 35°C and pH 8.0 in the presence of Mn2+. Heat-inactivation analysis revealed that PtIDH2 is a cold-adapted enzyme. Kinetic analysis demonstrated that PtIDH2 is a completely NADP+-specific IDH with no detectable NAD+-associated catalytic activity. The three putative key NADP+-binding residues (His604, Arg615, and Arg664) in PtIDH2 were also evaluated by site-directed mutagenesis. The H604L/R615D/R664S triple mutant showed a 3.25-fold preference for NAD+ over NADP+, implying that the coenzyme specificity of PtIDH2 can be converted from NADP+ to NAD+ through rational engineering approaches. Additionally, the roles of the conserved residues Ala718 and Leu742 in the thermostability of PtIDH2 were also explored by site-directed mutagenesis. We found that the L742F mutant displayed higher thermostability than wild-type PtIDH2. This study expands the phylogeny of the IDH family and provides new insights into the evolution of IDHs.

16.
Microb Cell Fact ; 20(1): 113, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098969

RESUMEN

BACKGROUND: Menaquinone (MK-7) is a highly valuable vitamin K2 produced by Bacillus subtilis. Common static metabolic engineering approaches for promoting the production of MK-7 have been studied previously. However, these approaches caused an accumulation of toxic substances and reduced product yield. Hence, dynamic regulation by the quorum sensing (QS) system is a promising method for achieving a balance between product synthesis and cell growth. RESULTS: In this study, the QS transcriptional regulator SinR, which plays a significant role in biofilm formation and MK production simultaneously, was selected, and its site-directed mutants were constructed. Among these mutants, sinR knock out strain (KO-SinR) increased the biofilm biomass by 2.8-fold compared to the wild-type. SinRquad maximized the yield of MK-7 (102.56 ± 2.84 mg/L). To decipher the mechanism of how this mutant regulates MK-7 synthesis and to find additional potential regulators that enhance MK-7 synthesis, RNA-seq was used to analyze expression changes in the QS system, biofilm formation, and MK-7 synthesis pathway. The results showed that the expressions of tapA, tasA and epsE were up-regulated 9.79-, 0.95-, and 4.42-fold, respectively. Therefore, SinRquad formed more wrinkly and smoother biofilms than BS168. The upregulated expressions of glpF, glpk, and glpD in this biofilm morphology facilitated the flow of glycerol through the biofilm. In addition, NADH dehydrogenases especially sdhA, sdhB, sdhC and glpD, increased 1.01-, 3.93-, 1.87-, and 1.11-fold, respectively. The increased expression levels of NADH dehydrogenases indicated that more electrons were produced for the electron transport system. Electrical hyperpolarization stimulated the synthesis of the electron transport chain components, such as cytochrome c and MK, to ensure the efficiency of electron transfer. Wrinkly and smooth biofilms formed a network of interconnected channels with a low resistance to liquid flow, which was beneficial for the uptake of glycerol, and facilitated the metabolic flux of four modules of the MK-7 synthesis pathway. CONCLUSIONS: In this study, we report for the first time that SinRquad has significant effects on MK-7 synthesis by forming wrinkly and smooth biofilms, upregulating the expression level of most NADH dehydrogenases, and providing higher membrane potential to stimulate the accumulation of the components in the electron transport system.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vitamina K 2/metabolismo , Bacillus subtilis/química , Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Potenciales de la Membrana , Ingeniería Metabólica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Conformación Proteica , Percepción de Quorum , ARN Bacteriano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Enzyme Microb Technol ; 138: 109583, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32527527

RESUMEN

The enzyme 1, 4-dihydroxy-2-naphthoic acid (DHNA) prenyltransferase (MenA) is a critical player in determining the efficiency of the menaquinone (MK) synthesis pathway and is an attractive target for the development of novel chemotherapeutics against pathogenic Gram-positive bacteria. However, there has been no report on structural properties or active region of MenA. To solve this challenge, we predicted the three-dimensiona structure and critical amino acid sites of MenA by bioinformatics analysis. Six amino acid sites were chosen by alligning the amino acid sequence of MenA from Bacillus subtilis natto with 4-hydroxybenzoate octaprenyl transferase (UbiA) from Escherichia coli, Aeropyrum pernix and Archaeoglobus fulgidus. Among them, four Asp sites located in two Asp-rich motifs (D78XXXXXD84 and D208XXXD212) were found to be indispensable amino acid residues in maintaining MenA activity. Site-directed mutagenesis of two other sites (Q67th, N74th) positively affected the catalytic activity of MenA and the MK titer. Q67R resulted in more than a 5-fold increase in specific 2-demethylmenaquinone (DMK) content (YP1/x) compared to wild-type, and the hydrophobic interaction between Cys63 and Arg67 could be the main reason according to the three-dimensional structure analysis. Moreover, a dramatic increase in specific MK content (YP2/x) was realized by co-expressing menG in EcMenA (Q67R). The results obtained could be useful not only in developing novel chemotherapeutics to combat potentially pathogenic Gram-positive bacteria, but also in regulating and optimizating E. coli mutant cultures for the efficient production of MK metabolites.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Dimetilaliltranstransferasa/química , Vitamina K 2/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutación , Naftoles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Sci Rep ; 10(1): 3889, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127574

RESUMEN

A new bacterial strain, designated HM134T, was isolated from a sample of soil collected from a Chinese mangrove Avicennia marina forest. Assessed by a polyphasic approach, the taxonomy of strain HM134T was found to be associated with a range of phylogenetic and chemotaxonomic properties consistent with the genus Micromonospora. Phylogenetic analysis based on the 16s rRNA gene sequence indicated that strain HM134T formed a distinct lineage with the most closely related species, including M. rifamycinica AM105T, M. wenchangensis CCTCC AA 2012002T and M. mangrovi 2803GPT1-18T. The ANI values between strain HM134T and the reference strains ranged from 82.6% to 95.2%, which was below the standard criteria for classifying strains as the same species (96.5%). Strain HM134T and related species shared in silico dDDH similarities values below the recommended 70% cut-off for the delineation of species (range from 25.7-62.6%). The DNA G+C content of strain HM134T was 73.2 mol%. Analysis of phylogenetic, genomic, phenotypic and chemotaxonomic characteristics revealed that strain HM134T is considered to represent a novel species of the genus Micromonospora, for which the name M. zhangzhouensis sp. nov. is proposed. The extract of strain HM134T was demonstrated to exhibit cytotoxic activity against the human cancer cell lines HepG2, HCT-116 and A549. Active substance presented in the fermentation broth of strain HM134T was isolated by bioassay-guided analysis and purified afterwards. A new derivative of diterpenoid was identified through electrospray ionizing mass spectrometry (MS) and nuclear magnetic resonance (NMR). The compound showed different cytotoxic activities against cancer cells, with the highest cytotoxicity against HCT-116, corresponding to IC50 value of 38.4 µg/mL.


Asunto(s)
Antineoplásicos/farmacología , Avicennia , Micromonospora/aislamiento & purificación , Micromonospora/metabolismo , Microbiología del Suelo , Antineoplásicos/metabolismo , Línea Celular Tumoral , Genómica , Genotipo , Humanos , Micromonospora/genética , Familia de Multigenes/genética , Filogenia
19.
Nat Prod Res ; 34(14): 2080-2085, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30822138

RESUMEN

A new O-cinnamoyl threonine derivative, O-(2-(3-methyloxiranyl) cinnamoyl) threonine (1), was isolated from the gene adpA overexpression strain Streptomyces sp. HS-NF-1222A. The structure of 1 was determined based on HRESIMS and extensive NMR analysis.


Asunto(s)
Proteínas Bacterianas/genética , Streptomyces/genética , Treonina/análogos & derivados , Transactivadores/genética , Expresión Génica , Estructura Molecular , Análisis Espectral , Streptomyces/química
20.
Nat Prod Res ; 34(20): 2959-2963, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31104491

RESUMEN

Two new sixteen-membered macrolides, Δ2,3-tenvermectin A (1) and 13α-hydroxy milbemycin ß11 (2), were isolated from the fermentation broth of the genetically engineered strain Streptomyces avermitilis MHJ1011. Their structures were determined based on extensive spectroscopic analysis and comparison with related known compounds. Compounds 1 and 2 exhibited potent acaricidal activity against Tetranychus cinnabarinus.


Asunto(s)
Acaricidas/farmacología , Streptomyces/genética , Streptomyces/metabolismo , Acaricidas/química , Animales , Fermentación , Espectroscopía de Resonancia Magnética , Microorganismos Modificados Genéticamente , Estructura Molecular , Tetranychidae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...