Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
PeerJ ; 12: e17616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952966

RESUMEN

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Cordón Umbilical , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Humanos , Cordón Umbilical/citología , Femenino , Tejido Adiposo/citología , Células Cultivadas , Vellosidades Coriónicas/fisiología , Amnios/citología , Diferenciación Celular
2.
Adv Mater ; : e2405747, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898683

RESUMEN

To meet the growing demand for energy storage, lithium-ion batteries (LIBs) with fast charging capabilities has emerged as a critical technology. The electrode materials affect the rate performance significantly. Organic electrodes with structural flexibility support fast lithium-ion transport and are considered promising candidates for fast-charging LIBs. However, it is a challenge to create organic electrodes that can cycle steadily and reach high energy density in a few minutes. To solve this issue, accelerating the transport of electrons and lithium ions in the electrode is the key. Here, it is demonstrated that a ferrocene-based polymer electrode (Fc-SO3Li) can be used as a fast-charging organic electrode for LIBs. Thanks to its molecular architecture, LIBs with Fc-SO3Li show exceptional cycling stability (99.99% capacity retention after 10 000 cycles) and reach an energy density of 183 Wh kg-1 in 72 seconds. Moreover, the composite material through in situ polymerization with Fc-SO3Li and 50 wt % carbon nanotube (denoted as Fc-SO3Li-CNT50) achieved optimized electron and ion transport pathways. After 10 000 cycles at a high current density of 50C, it delivered a high energy density of 304 Wh kg-1. This study provides valuable insights into designing cathode materials for LIBs that combine high power and ultralong cycle life.

3.
ACS Appl Mater Interfaces ; 16(23): 30284-30295, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38812067

RESUMEN

As the power core of an electric vehicle, the performance of lithium-ion batteries (LIBs) is directly related to the vehicle quality and driving range. However, the charge-discharge performance and cycling performance are affected by the temperature. Excessive temperature can cause internal short circuits and even lead to safety issues, such as thermal runaway. The separator plays a crucial role in protecting the battery from regular operation, preventing direct touch between the cathode and the anode while allowing the transport of lithium ions. In this study, we have designed a thermoregulating separator in the shape of calabash, which uses melamine-encapsulated paraffin phase change material (PCM) with a wide enthalpy (0-168.52 J g-1) to dissipate the heat generated inside the battery promptly. Under extra-long-use conditions, the heat emitted by the battery is absorbed by the PCM without causing a significant temperature rise that triggers thermal runaway. The PCM separator can effectively suppress the temperature increase caused by battery penetration. Due to the unique structure of the PCM, the battery is short-circuited; it can significantly delay the internal temperature rise of the battery and quickly dissipate the heat, which is consistent with the characteristics of natural calabash in nutrient absorption and water diffusion, improving the melting and heat storage efficiency of the PCM. The design of the phase change separator provides an effective reference for overheat protection and improved safety in lithium-ion batteries.

4.
Pharmaceuticals (Basel) ; 17(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794206

RESUMEN

Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.

5.
Membranes (Basel) ; 14(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668106

RESUMEN

Pervaporation is an energy-efficient alternative to conventional distillation for water/alcohol separations. In this work, a novel CHA zeolite membrane with an increased Si/Al ratio was synthesized in the absence of organic templates for the first time. Nanosized high-silica zeolite (SSZ-13) seeds were used for the secondary growth of the membrane. The separation performance of membranes in different alcohol-aqueous mixtures was measured. The effects of water content in the feed and the temperature on the separation performance using pervaporation and vapor permeation were also studied. The best membrane showed a water/ethanol separation factor above 100,000 and a total flux of 1.2 kg/(m2 h) at 348 K in a 10 wt.% water-ethanol mixed solution. A membrane with high performance and an increased Si/Al ratio is promising for the application of alcohol dehydration.

6.
ACS Macro Lett ; : 166-173, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236011

RESUMEN

The demand for higher energy density in energy storage devices drives further research on lithium metal batteries (LMBs) because of the high theoretical capacity and low voltage of lithium metal anode. Polymer electrolytes (PEs) exhibit obvious advantages in combating volatilization and leakage compared with liquid electrolytes, which improves the safety of LMBs. However, it is still difficult to construct PEs with a stable electrolyte-electrode interface for high-performance and long-term life LMBs. Herein, the gel polymer electrolyte (GPE-SL) containing deep eutectic electrolyte (DEE) and branchlike polymer skeleton are designed and prepared by the DEE-induced in situ cationic and radical polymerizations. The DEE provides a smooth Li+ migration pathway to ensure the electrochemical properties, and the multibrominated polymer matrix formed in situ enables a LiBr-rich solid electrolyte interphase (SEI) layer on lithium metal anode and prolongs the life span of LMBs. Hence, the Li|GPE-SL|LiFePO4 battery displays an excellent cycling stability with 84% capacity retention after 1200 cycles at 1C. This simple deep eutectic electrolyte-induced polymerization method provides a promising direction for high-performance LMBs with improved anode-electrolyte compatibility through the construction of a stable SEI layer in situ.

7.
Reprod Sci ; 31(4): 1159-1169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38097900

RESUMEN

The efficacy of human amniotic mesenchymal stem cell (hAMSC) ovarian injection in improving ovarian function in primary ovarian insufficiency (POI) patients has been shown in some reports. However, the safety and efficacy of hAMSC vein injection remains unclear. In this study, we evaluated the safety and efficacy of hAMSC intravenous injection in cynomolgus macaques and SD rats and provided evidence for clinical trials. The hAMSCs were transplanted three times in SD rats at low, medium, and high doses. The animal behavior and biochemical and biophysical parameters were routinely monitored on a 2-month period posttransplantation, and histopathologic examinations were also performed. Experiments on the acute toxicity, allergy test, and hemolysis test showed that hAMSCs possess good biocompatibility. Our results showed that the maximum tolerated dose of hAMSCs in SD rats was 4.0 × 107 cells/kg. The maximum safe dose with three injections of hAMSCs in SD rats was 5.0 × 106 cells/kg. In addition, the results demonstrated that hAMSCs may restore POI rat ovarian function after two injections of 2.5 × 106 cells/kg or 5.0 × 106 cells/kg, which improved the disturbed estrous cycle, hormone levels, and ovarian lesions induced by pZP3. In conclusion, the preclinical results suggested that the transplantation of hAMSCs may be safe and efficacious for SD rats at doses of 5.0 × 106 cells/kg and lower.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Quistes Ováricos , Neoplasias Ováricas , Insuficiencia Ovárica Primaria , Femenino , Humanos , Ratas , Animales , Insuficiencia Ovárica Primaria/metabolismo , Quistes Ováricos/metabolismo , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Neoplasias Ováricas/metabolismo , Células Madre Mesenquimatosas/metabolismo
8.
Front Immunol ; 14: 1297484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116006

RESUMEN

Introduction: Ovulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood. Methods: Here, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells. Results: Our study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naïve CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased. Discussion: Our results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder.


Asunto(s)
Infertilidad Femenina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/diagnóstico , Transcriptoma , Ovulación/genética , Infertilidad Femenina/terapia
9.
Front Cell Dev Biol ; 11: 1208501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534102

RESUMEN

The optimization of culture conditions is one of the main strategies to improve the embryo development competence in in vitro fertilization (IVF). Glucose is an important carbon source while also exists in the oviductal fluid in vivo, the effect of glucose in embryo development microenvironment is still unclear. Here we employed the LC-MS to detect and analyze the metabolites in the culture medium of different cleavage stages including 2-Cell, 4-Cell and 8-Cell mouse embryos, respectively. The effects of the external glucose were estimated by measuring the development rate at different glucose concentrations from 0 to 5 mmol/L, and the gene expression changes were detected to explore the potential mechanism after the addition of glucose in the media. Our results indicated the 2-Cell and 8-Cell stages had defined characteristic metabolites, while 4-Cell stage was the transition state. Global and contiguous metabolic characteristics showed the glycometabolism play a critical role at each early cleavage stages during the embryo development. The 8-Cell rates demonstrated the addition of glucose in culture media significantly improve the embryo competence, the highest rate was 87.33% using 3 mmol/L glucose in media, in contrast only 9.95% using the media without glucose. Meanwhile, the blocked embryos were mainly enriched at 2-Cell stage. Further transcriptome study found 3 mmol/L glucose in media remarkably upregulated the gene expression of lipid biosynthesis at 2-Cell stage, the increased lipid was confirmed by nile red staining. These data indicated the glucose may promote the development competence through increasing the lipid biosynthesis to overcoming the 2-Cell block. Our findings were helpful for the further optimization of IVF culture media, as well as the estimation of embryo quality using metabolites in the culture media.

10.
iScience ; 26(7): 107057, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534158

RESUMEN

Bipolar disorder (BD) is a common mental disorder characterized by manic and depressive episodes. Mood disorders have been associated with immune dysfunction. The combination of quetiapine and valproate has shown positive effects in treating BD, but the impact on immune dynamics remains less understood. Using single-cell RNA sequencing, we observed that B cells exhibited downregulation of inflammation-related genes, while pro-inflammatory mast and eosinophil cells decreased following treatment. Ribosomal peptide production genes were found to be reduced in both B and T cells after treatment. Additionally, our findings suggest that the combined therapy effectively alleviates inflammation by reducing myloid-mediated immune signaling pathways. This study provides valuable insights into the immune atlas and uncovers a potential mechanism for immune disorder alleviation in patients with BD treated with quetiapine and valproate.

11.
Comput Biol Med ; 162: 107077, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290390

RESUMEN

CircRNA is a non-coding RNA with a special circular structure, which plays a key role in a variety of life activities by interacting with RNA-binding proteins through CircRNA binding sites. Therefore, accurately identifying CircRNA binding sites is of great importance for gene regulation. In previous studies, most of the methods are based on single-view or multi-view features. Considering that single-view methods provide less effective information, the current mainstream methods mainly focus on extracting rich relevant features by constructing multiple views. However, the increasing number of views leads to a large amount of redundant information, which is detrimental to the detection of CircRNA binding sites. Therefore, to solve this problem, we propose to use the channel attention mechanism to further obtain useful multi-view features by filtering out invalid information in each view. First, we use five feature encoding schemes to construct multi-view. Then, we calibrate the features by generating the global representation of each view, filtering out redundant information to retain important feature information. Finally, features obtained from multiple views are fused to detect RNA binding sites. To validate the effectiveness of the method, we compared its performance on 37 CircRNA-RBP datasets with existing methods. Experimental results show that the average AUC performance of our method is 93.85%, which is better than the current state-of-the-art methods. We also provide the source code, which can be accessed at https://github.com/dxqllp/ASCRB for access.


Asunto(s)
ARN Circular , Proteínas de Unión al ARN , ARN Circular/genética , Sitios de Unión , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Programas Informáticos , Regulación de la Expresión Génica
12.
Biol Reprod ; 108(5): 709-719, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36892411

RESUMEN

With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Animales , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentación/genética , Diferenciación Celular/genética , Expresión Génica , Mamíferos
13.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677712

RESUMEN

Background: Homocysteine (Hcy) has been found to be closely related to the occurrence of diabetes mellitus (DM) and is considered as one of the risk factors of DM. However, Hcy alone is not enough as a factor to predict DM, and our study analyzed and determined the relationship between the main metabolites involved in the Hcy metabolic pathway and DM. Methods: A total of 48 clinical samples were collected, including 18 health control samples and 30 DM samples. All standards and samples were detected by LC-QTOF-MS. Multivariate statistical analysis and k-means cluster analysis were performed to screen and confirm the metabolites significantly correlated with DM. Results: A total of 13 metabolites of the Hcy metabolic pathway were detected in the samples. The content of Hcy, cysteine, taurine, pyridoxamine, methionine, and choline were significantly increased in the DM group (p < 0.05). Hcy, choline, cystathionine, methionine, and taurine contributed significantly to the probabilistic principal component analysis (PPCA) model. The odds ratios (OR) of Hcy, cysteine, taurine, methionine, and choline were all greater than one. K-means cluster analysis showed that the Hcy, taurine, methionine, and choline were significantly correlated with the distribution of glucose values (divided into four levels: 10.5−11.7 mmol/L, 7.7−9.7 mmol/L, 6.0−6.9 mmol/L, and 5.0−5.9 mmol/L, respectively). Conclusion: Hcy, taurine, methionine, and choline can be used as risk factors for diabetes diagnosis and are expected to be used for the assessment of diabetes severity.


Asunto(s)
Diabetes Mellitus , Homocisteína , Humanos , Homocisteína/metabolismo , Cisteína/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , Colina , Redes y Vías Metabólicas , Taurina
14.
Angew Chem Int Ed Engl ; 62(9): e202213606, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36509706

RESUMEN

To optimize the rapid transport of lithium ions (Li+ ) inside lithium metal batteries (LMBs), block copolymer electrolytes (BCPEs) have been fabricated in situ in LMBs via a one-step method combining reversible addition-fragmentation chain transfer (RAFT) polymerization and carboxylic acid-catalyzed ring-opening polymerization (ROP). The BCPEs balanced the Li+ coordination characteristics of the polyether- and polyester-based electrolytes to achieve a rapid Li+ migration in the SPEs. The carboxylic acid played a dual role since it both catalyzed the ROP and stabilized the interface. Furthermore, the in situ assembly of LMBs did effectively enable an efficient intercalation/de-intercalation of Li+ at the electrode/electrolyte interface. The in situ assembled Li/BCPE4/LFP exhibited high-capacity retention of 92 % after 400 cycles at 1 C. The one-step in situ fabrication of BCPEs provides a new direction for the design of polymer electrolytes.

15.
Environ Pollut ; 320: 120913, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563991

RESUMEN

Field measurements of atmospheric carbonyl compounds (carbonyls) and essential precursors of O3 were carried out in the urban area of Linfen City (Linfen) where serious O3 pollution has occurred in recent years due to its unique terrain. Carbonyls were sampled using an automatic carbonyl sampler in August 2019 to determine their pollution characteristics and sources. An average concentration of ten carbonyls was 27 ± 5.7 µg m-3 detected using an HPLC-UV system. The concentrations of most detected carbonyls in August were significantly higher than those in the winter months in China. Acetone, formaldehyde and acetaldehyde were the most abundant species, accounting for 73% of all detected carbonyls. Formaldehyde, acetaldehyde, and methacrolein (MACR) were the most significant contributors to OH• reactivity and ozone generation, indicating that these three carbonyls were the key species influencing the production of O3. The concentrations of formaldehyde, acetaldehyde, and MACR showed similar diurnal variations on most days, with high values during the daytime reaching a peak at 10:00. However, the concentrations of the latter two species varied less than that of formaldehyde during the day. The acetone concentration generally increased continuously from morning to night, with the maximum value around 22:00. The C1/C2 ratio in summer was higher than that in winter. These results indicated that the carbonyls in Linfen were not only affected by anthropogenic sources such as vehicle exhaust but also by secondary photochemical production. The results of formaldehyde source apportionment showed that the contributions of background, primary, and secondary sources to the observed formaldehyde concentration were 27.6%, 36.6%, and 35.8%, respectively. Additionally, this study revealed for the first time that the vertical transport of air masses containing high concentrations of O3 and NO3 radicals above the boundary layer could increase the secondary generation of formaldehyde at night in summer.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Acetona/análisis , Monitoreo del Ambiente/métodos , Formaldehído/análisis , Acetaldehído/análisis , China , Compuestos Orgánicos Volátiles/análisis
16.
J Environ Manage ; 325(Pt A): 116534, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36419282

RESUMEN

Long-term continuous hourly measurements of ambient volatile organic compounds (VOCs) are scarce at the regional scale. In this study, a one-year hourly measurement campaign of VOCs was performed in Lvliang, Linfen, and Yuncheng in the heavily polluted Fenhe Plain region in China. The VOC average (±standard deviation, std) concentrations in Lvliang, Linfen, and Yuncheng were 44.4 ± 24.9, 45.7 ± 24.9, and 37.5 ± 25.0 ppbv, respectively. Compared to published data from the past two decades in China, the observed VOCs were at high concentration levels. VOCs in the Fenhe Plain cities were significantly impacted by industrial sources according to calculated emission ratios but were less affected by liquefied petroleum gas and natural gas (LPG/NG) and traffic emissions than those in megacities abroad. The emission inventories and observation data were combined for verification and identification of the key VOC species and sources controlling ozone (O3). Industrial emissions were the largest source of VOCs, accounting for 65%-79% of the total VOC emissions, while the coking industry accounted for 45.2%-66.0%. The emission inventories significantly underestimated oxygenated VOC (OVOC) emissions through the verification of VOC emission ratios. O3 control scenarios were analyzed by changing VOC/NOX reduction ratios through a photochemical box model. O3 control strategies were formulated considering local pollution control plans, emission inventories, and O3 formation regimes. The O3 reduction of reactivity-control measures was comparable with emission-control measures, ranging from 16% to 41%, which was contrary to the general perception that ozone formation potential (OFP)-based measures were more efficient for O3 reduction. Sources with high VOC emissions are accompanied by high OFP on the Fenhe Plain, indicating that the control of high-emission sources can effectively mitigate O3 pollution on this region.


Asunto(s)
Ozono , Compuestos Orgánicos Volátiles , Ciudades , China , Contaminación Ambiental
17.
Heliyon ; 8(11): e11148, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36339749

RESUMEN

Osteoarthritis (OA) is characterised by cartilage destruction; however, there are no specific drugs available for its treatment. Cartilage-derived stem/progenitor cells (CSPCs) are multipotent cells that play an essential role in cartilage renewal and may provide critical insights into the medical needs for OA treatment. However, alterations in cell function and fate of CSPCs during OA progression have seldom been analysed, especially at the single-cell level. Additionally, it has been reported that CSPCs can migrate to the cartilage injury area, although the mechanism of migration remains elusive. Thus, understanding the changing patterns of CSPCs in the pathological process of OA is important in the effort to develop stem cell therapy for OA. Here, we downloaded single-cell transcriptomic data of patients with OA from the Gene Expression Omnibus (GEO) database and performed unbiased clustering of the cells based on gene expression patterns using the Seurat package. Using common stem cell markers and chondrogenic transcription factors, we traced CSPCs throughout all stages of OA. We further explored the dynamics of CSPCs in OA progression and validated the single-cell RNA sequencing data in vitro using qPCR, immunofluorescence, and western blotting. Specifically, we primarily explored the heterogeneity of CSPCs at the single-cell level and found that it was closely associated with OA progression. Our results indicate significantly reduced chondrogenic differentiation capacity in CSPCs during the late stage of OA, while their proliferation capacity tended to increase. We also found that genes implicated in fibrosis, cell motility, and extracellular matrix remodelling were upregulated in CSPCs during the progression of OA. Our study revealed the dynamics of stem cells in OA progression and may inform the development of stem cell therapy for OA.

18.
Nutr Res Pract ; 16(5): 604-615, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36238382

RESUMEN

BACKGROUND/OBJECTIVES: This study aimed to investigate cancer-specific survival (CSS) and associated risk factors in elderly gastric cancer (EGC) patients. SUBJECTS/METHODS: EGC patients (≥ 70 yrs) who underwent curative gastrectomy between January 2013 and December 2017 at our hospital were included. Clinicopathologic characteristics and survival data were collected. Receiver operating characteristic (ROC) analysis was used to extract the best cutoff point for body mass index (BMI). A Cox proportional hazards model was used to determine the risk factors for CSS. RESULTS: In total, 290 EGC patients were included, with a median age of 74.7 yrs. The median follow-up time was 31 (1-77) mon. The postoperative 1-yr, 3-yr and 5-yr CSS rates were 93.7%, 75.9% and 65.1%, respectively. Univariate analysis revealed risk factors for CSS, including age (hazard ratio [HR] = 1.08; 95% confidence interval [CI], 1.01-1.15), intensive care unit (ICU) admission (HR = 1.73; 95% CI, 1.08-2.79), nutritional risk screening (NRS 2002) score ≥ 5 (HR = 2.33; 95% CI, 1.49-3.75), and preoperative prognostic nutrition index score < 45 (HR = 2.06; 95% CI, 1.27-3.33). The ROC curve showed that the best BMI cutoff value was 20.6 kg/m2. Multivariate analysis indicated that a BMI ≤ 20.6 kg/m2 (HR = 2.30; 95% CI, 1.36-3.87), ICU admission (HR = 1.97; 95% CI, 1.17-3.30) and TNM stage (stage II: HR = 5.56; 95% CI, 1.59-19.43; stage III: HR = 16.20; 95% CI, 4.99-52.59) were significantly associated with CSS. CONCLUSIONS: Low BMI (≤ 20.6 kg/m2), ICU admission and advanced pathological TNM stages (II and III) are independent risk factors for CSS in EGC patients after curative gastrectomy. Nutrition support, better perioperative management and early diagnosis would be helpful for better survival.

19.
Environ Pollut ; 315: 120389, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223855

RESUMEN

Fireworks are widely used in celebrations worldwide. The effects of fireworks on the physicochemical characteristics of atmospheric particles are well documented. However, the influence of firework burning on ambient volatile organic compound (VOC) emissions remains unclear. To determine the impact of firework-burning events on VOC emissions, ambient VOCs were measured at a receptor site on the Fenwei Plain during the Chinese Spring Festival period. Firework-burning plumes were identified by using potassium ions (K+) as tracers, and twenty VOC species were obtained as firework tracers. The emission ratios of the VOC species relative to K+ were in a range of 5.40 × 10-3-1.41 µg m-3/µg m-3 and were first estimated through the linear fitting method and source-tracer-ratio method. The VOC contributions of firework burning during the Lantern Festival (31.7 ± 8.3%) were higher than the levels during the Chinese New Year (28.6 ± 7.5%). The daytime net ozone (O3) formation rates during the Spring Festival and Lantern Festival increased by 11.4% and 15.2%, respectively, on average due to firework emissions. Secondary organic aerosol formation potential (SOAP) increased by 18.2% and 34.1% on average, respectively. These results can provide the source tracers of fireworks, and can subsequently help assess their impact on regional air quality and public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles/análisis , China , Emisiones de Vehículos/análisis
20.
J Biomed Inform ; 136: 104231, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309196

RESUMEN

CircRNAs usually bind to the corresponding RBPs(RNA Binding proteins) and play a key role in gene regulation. Therefore, it is important to identify the binding sites of RBPs on CircRNAs for the regulation of certain diseases. Due to the information provided by the single view feature is limited, the current mainstream methods are mainly to detect the RBP binding sites by constructing multi-view models. However, with the number of view features increases, the invalid information also increases, and the existing methods only simply concatenate together various features from different views, while ignoring the intrinsic connection between multi-view data. To solve this problem, we propose a new multi-view joint representation learning network by improving the consistency of multi-view feature information. First, the network uses different feature encoding methods to fully extract the feature information of RNA, respectively. Then we construct the intrinsic connection between the views by generating a global joint representation of multiple views, and this is used for feature calibration of each view to highlight important features and suppress unimportant ones. Finally, the depth features obtained from the fusion of multiple views are used to detect the binding sites of RNAs. The average AUC of our method is 93.68% in 37 CircRNA-RBP datasets. The experimental results show that the prediction performance of the method is better than existing methods. The code and datasets are obtained at https://github.com/Xuezg/JLCRB. In addition, we also provide a free web server that is freely available at http://82.157.188.204/JLCRB/.


Asunto(s)
ARN Circular , Proteínas de Unión al ARN , Sitios de Unión , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...