Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 988703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246629

RESUMEN

In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.

2.
BMC Biotechnol ; 21(1): 49, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372833

RESUMEN

BACKGROUND: Nattokinase is a fibrinolytic enzyme that has huge market value as a nutritional supplement for health promotion. In order to increase nattokinase yields, fermentation conditions, strains, cultivation media, and feeding strategies have been optimized. Nattokinase has been expressed using several heterologous expression systems. Pichia pastoris heterologous expression system was the alternative. RESULTS: This report aimed to express high levels of nattokinase from B. subtilis natto (NK-Bs) using a Pichia pastoris heterologous expression system and assess its fibrinolytic activity in vivo. Multicopy expression strains bearing 1-7 copies of the aprN gene were constructed. The expression level of the target protein reached a maximum at five copies of the target gene. However, multicopy expression strains were not stable in shake-flask or high-density fermentation, causing significant differences in the yield of the target protein among batches. Therefore, P. pastoris bearing a single copy of aprN was used in shake-flask and high-density fermentation. Target protein yield was 320 mg/L in shake-flask fermentation and approximately 9.5 g/L in high-density fermentation. The recombinant nattokinase showed high thermo- and pH-stability. The present study also demonstrated that recombinant NK-Bs had obvious thrombolytic activity. CONCLUSIONS: This study suggests that the P. pastoris expression system is an ideal platform for the large-scale, low-cost preparation of nattokinase.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Subtilisinas/química , Subtilisinas/genética , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Fermentación , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacología , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Subtilisinas/metabolismo , Subtilisinas/farmacología
3.
Protein Expr Purif ; 183: 105859, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33647399

RESUMEN

Methyl parathion hydrolase (MPH) hydrolyses methyl parathion efficiently and specifically. Herein, we produced MPH from Plesiomonas sp. M6 using a Pichia pastoris multi-copy expression system. The original signal peptide sequence of the target gene was removed, and a modified coding sequence was synthesised. Multi-copy expression plasmids containing MPH were constructed using pHBM905BDM, and used to generate recombinant strains containing 1, 2, 3 or 4 copies of the MPH gene. The results showed that a higher target gene copy number increased the production of recombinant MPH (MPH-R), as anticipated. The expression level of the recombinant strain containing four copies of the MPH gene was increased to 1.9 U/ml using 500 ml shake flasks, and the specific activity was 15.8 U/mg. High-density fermentation further increased the target protein yield to 18.4 U/ml. Several metal ions were tested as additives, and Ni2+, Co2+ and Mg2+ at a concentration of 1 mM enhanced MPH-R activity by 196%, 201% and 154%, respectively. Enzyme immobilisation was then applied to overcome the difficulties in recovery, recycling and long-term stability associated with the free enzyme. Immobilised MPH-R exhibited significantly enhanced thermal and long-term stability, as well as broad pH adaptability. In the presence of inhibitors and chelating agents such as sodium dodecyl sulphate (SDS), immobilised MPH-R displayed 2-fold higher activity than free MPH-R, demonstrating its potential for industrial application.


Asunto(s)
Proteínas Bacterianas , Enzimas Inmovilizadas , Expresión Génica , Monoéster Fosfórico Hidrolasas , Plesiomonas/genética , Saccharomycetales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Enzimas Inmovilizadas/biosíntesis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/biosíntesis , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Plesiomonas/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
Neurochem Res ; 46(4): 935-944, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33511575

RESUMEN

Depression is one of most common psychiatric disorders, and the detailed molecular mechanism remains to be fully elucidated. Brain-derived neurotrophic factor (BDNF) is a critical neurotrophic factor that is decreased and closely involved in the development of depression. Noncoding RNAs are central regulators of cellular activities that modulate target genes. However, the roles of long noncoding RNA (lncRNA) MIR155HG and miRNA-155 (miR-155) in the pathophysiology of depression are unclear. In the present study, we aimed to explore the effects of lncRNA MIR155HG and miR-155 on the development of depression and uncover the underlying molecular mechanism. Real-time quantitative polymerase chain reaction was used to examine the expression of MIR155HG and miR-155. Western blotting was applied to measure the expression of BDNF. A luciferase reporter assay was utilized to determine the regulatory relationship between MIR155HG and miR-155. Our current work found that lncRNA MIR155HG and BDNF levels decreased while miR-155 levels increased in the hippocampal region of CUMS (chronic unpredictable mild stress) mice, a well-accepted mouse model of depression. Moreover, MIR155HG rescued while miR-155 exacerbated the depression-like behaviors of CUMS mice. Through bioinformatics analysis and luciferase reporter assays, we found that MIR155HG directly bound to and negatively modulated the expression of miR-155. Moreover, increased miR-155 was found to repress the expression of BDNF, a critical neurotrophic factor that has been reported to alleviate the depression-like behaviors of CUMS mice. Our present study revealed that lncRNA MIR155HG protected CUMS mice by regulating the miR-155/BDNF axis. Our study aimed to understand the pathophysiology of depression and provided potential therapeutic targets to diagnose and treat depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/fisiopatología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Depresión/etiología , Depresión/metabolismo , Regulación hacia Abajo/fisiología , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Transducción de Señal/fisiología
5.
Gene ; 651: 200-205, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29366758

RESUMEN

OBJECTIVE: High altitude pulmonary edema (HAPE) is a life threatening condition occurring in otherwise healthy individuals who rapidly ascend to high altitude. However, the molecular mechanisms of its pathophysiology are not well understood. The objective of this study is to evaluate differential gene expression in patients with HAPE during acute illness and subsequent recovery. METHODS: Twenty-one individuals who ascended to an altitude of 3780 m were studied, including 12 patients who developed HAPE and 9 matched controls without HAPE. Whole-blood samples were collected during acute illness and subsequent recovery for analysis of the expression of hypoxia-related genes, and physiologic and laboratory parameters, including mean pulmonary arterial pressure (mPAP), heart rate, blood pressure, and arterial oxygen saturation (SpO2), were also measured. RESULTS: Compared with control subjects, numerous hypoxia-related genes were up-regulated in patients with acute HAPE. Gene network analyses suggested that HIF-1α played a central role in acute HAPE by affecting a variety of hypoxia-related genes, including BNIP3L, VEGFA, ANGPTL4 and EGLN1. Transcriptomic profiling revealed the expression of most HAPE-induced genes was restored to a normal level during the recovery phase except some key hypoxia response factors, such asBNIP3L, EGR1, MMP9 and VEGF, which remained persistently elevated. CONCLUSIONS: Differential expression analysis of hypoxia-related genes revealed distinct molecular signatures of HAPE during acute and recovery phases. This study may help us to better understand HAPE pathogenesis and putative targets for further investigation and therapeutic intervention.


Asunto(s)
Mal de Altura/genética , Hipertensión Pulmonar/genética , Edema Pulmonar/genética , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/genética , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Perfilación de la Expresión Génica , Humanos , Regulación hacia Arriba
6.
Protein Expr Purif ; 133: 1-7, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254397

RESUMEN

Two thermophilic ß-mannanases (ManA and ManB)were successfully expressed in Yarrowialipolytica using vector pINA1296I. The sequences of manA from Aspergillus niger CBS 513.88 and manB from Bacillus subtilis BCC41051 were optimized based on codon-usage bias in Y.lipolytica and synthesized by overlapping polymerase chain reaction (PCR). We utilized the pINA1296I vector, which allows inserting and expression of multiple copies of an expression cassette, to engineer recombinant strains containing multiple copies of manA or manB. Following verification of target-gene expression by quantitative PCR, fermentation experiments indicated that recombinant protein levels and enzyme activity increased along with increasing manA/manB copy number.After production in a 10 l fermenter, we obtained maximum enzyme activity from strains YLA6 and YLB6 of3024 U/mL and 1024 U/mL, respectively. Additionally, purification and characterization results revealed that the optimum pH and temperature for manA activity were pH∼5 and ∼70 °C, and for manB activity were pH∼7 and 60 °C, respectively. These results indicated that the thermo stabilities of these two enzymes were higher than most other mannanases, making them potentially useful for industrial applications.


Asunto(s)
Aspergillus niger/genética , Bacillus subtilis/genética , Proteínas Bacterianas , Proteínas Fúngicas , Expresión Génica , Yarrowia/metabolismo , beta-Manosidasa , Aspergillus niger/enzimología , Bacillus subtilis/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Yarrowia/genética , beta-Manosidasa/biosíntesis , beta-Manosidasa/química , beta-Manosidasa/genética
7.
Protein Expr Purif ; 129: 108-114, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693490

RESUMEN

l-glutamate oxidase (GLOD), encoded by the gox gene, catalyses the transformation of l-glutamic acid into α-ketoglutaric acid (α-KG). In the present study, Pichia pastoris was used for heterologous production of GLOD following optimization of the gox coding sequence for expression in the yeast host. A series of constructs based on the pHBM905BDM plasmid were engineered and transformed into P. pastoris to increase the gox copy number. The results indicated that GLOD protein levels and enzyme activity increased with increasing gox copy number. Strain PGLOD4, which contained four copies of the target gene, was chosen for subsequent fermentation experiments, and a fermentation strategy involving two exponential feeding phases was developed. During the preinduction phase, glycerol was fed exponentially at µG = 0.15/h. When the cell density reached 300 g/l, methanol was fed exponentially at µM = 0.03/h to induce GLOD production. After 84 h of cultivation, the final cell density and total enzyme activity reached 420 g/L and 247.8 U/mL, respectively. The recombinant enzyme displayed an optimum temperature of 40 °C, which was higher than recombinant enzyme expressed in E. coli. This is important because increasing the temperature could accelerate enzymatic transformation of l-glutamic acid to α-KG. Experiments also demonstrated superior thermo-stability for the enzyme produced in yeast, which further enhances its potential for industrial applications.


Asunto(s)
Aminoácido Oxidorreductasas , Proteínas Bacterianas , Dosificación de Gen , Expresión Génica , Pichia/crecimiento & desarrollo , Streptomyces/genética , Aminoácido Oxidorreductasas/biosíntesis , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/aislamiento & purificación , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Pichia/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Streptomyces/enzimología
8.
J Hazard Mater ; 305: 51-58, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26642446

RESUMEN

In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74µm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...