Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Crit Rev Anal Chem ; 52(7): 1511-1523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34092138

RESUMEN

The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Neoplasias Ováricas , Biomarcadores , Detección Precoz del Cáncer , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Nanotecnología , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
2.
3 Biotech ; 10(8): 364, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832325

RESUMEN

In this study, biological deoxygenation of graphene oxide (GO) using an Eclipta prostrata phytoextract was performed via the infusion method. The presence of oxide groups on the surface of graphene and removal of oxides groups by reduction were characterized through morphological and structural analyses. Field emission scanning electron microscopy images revealed that the synthesized GO and rGO were smooth and morphologically sound. Transmission electron microscopy images showed rGO developing lattice fringes with smooth edges and transparent sheets. Atomic force microscopy images showed an increase in the surface roughness of graphite oxide (14.29 nm) compared with that of graphite (1.784 nm) due to the presence of oxide groups after oxidation, and the restoration of surface roughness to 2.051 nm upon reduction. Energy dispersive X-ray analysis indicated a difference in the carbon/oxygen ratio between GO (1.90) and rGO (2.70). Fourier-transform infrared spectroscopy spectrum revealed peak stretches at 1029, 1388, 1578, and 1630 cm-1 for GO, and a decrease in the peak intensity after reduction that confirmed the removal of oxide groups. X-ray photoelectron microscopy also showed a decrease in the intensity of oxygen peak after reduction. In addition, thermogravimetric analysis suggested that rGO was less thermally stable than graphite, graphite oxide, and GO, with rGO decomposing after heating at temperatures ranging from room temperature to 600 °C.

3.
Prep Biochem Biotechnol ; 50(10): 1053-1062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32597353

RESUMEN

This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm-1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.


Asunto(s)
Antibacterianos/química , Bombacaceae/química , Tecnología Química Verde , Nanopartículas Magnéticas de Óxido de Hierro/química , Extractos Vegetales/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Nanotecnología
4.
3 Biotech ; 10(5): 204, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32337150

RESUMEN

In this overview, the authors have discussed the potential advantages of the association between mycorrhizae and plants, their mutual accelerated growth under favorable conditions and their role in nutrient supply. In addition, methods for isolating mycorrhizae are described and spore morphologies and their adaptation to various conditions are outlined. Further, the significant participation of controlled greenhouses and other supported physiological environments in propagating mycorrhizae is detailed. The reviewed information supports the lack of host- and niche-specificity by arbuscular mycorrhizae, indicating that these fungi are suitable for use in a wide range of ecological conditions and with propagules for direct reintroduction. Regarding their prospective uses, the extensive growth of endomycorrhizal fungi suggests it is suited for poor-quality and low-fertility soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA