Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2679, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976145

RESUMEN

Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1µm) over a large field of view (>1 mm2). After the evolution of a Rayleigh-Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations.

2.
Phys Rev Lett ; 126(17): 175503, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988455

RESUMEN

In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.8) GPa, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.

3.
Phys Rev Lett ; 124(19): 193201, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469563

RESUMEN

Ultrafast multiphoton ionization of Xe in strong extreme ultraviolet free-electron laser (FEL) fields (91 eV, 30 fs, 1.6×10^{12} W/cm^{2}) has been investigated by multielectron-ion coincidence spectroscopy. The electron spectra recorded in coincidence with Xe^{4+} show characteristic features associated with two-photon absorption to the 4d^{-2} double core-hole (DCH) states and subsequent Auger decay. It is found that the pathway via the DCH states, which has eluded clear identification in previous studies, makes a large contribution to the multiple ionization, despite the long FEL pulse duration compared with the lifetime of the 4d core-hole states.

4.
J Synchrotron Radiat ; 26(Pt 4): 1139-1143, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274437

RESUMEN

Control of the polarization of an X-ray free-electron laser (XFEL) has been performed using an X-ray phase retarder (XPR) in combination with an arrival timing diagnostic on BL3 of the SPring-8 Angstrom Compact free-electron LAser (SACLA). To combine with the timing diagnostic, a pink beam was incident on the XPR crystal and then monochromated in the vicinity of samples. A high degree of circular polarization of ∼97% was obtained experimentally at 11.567 keV, which agreed with calculations based on the dynamical theory of X-ray diffraction. This system enables pump-probe experiments to be operated using circular polarization with a time resolution of 40 fs to investigate ultrafast magnetic phenomena.

5.
Sci Rep ; 8(1): 16407, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401885

RESUMEN

High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.

6.
Sci Rep ; 8(1): 17440, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487583

RESUMEN

A method of fabricating multilayer focusing mirrors that can focus X-rays down to 10 nm or less was established in this study. The wavefront aberration induced by multilayer Kirkpatrick-Baez mirror optics was measured using a single grating interferometer at a photon energy of 9.1 keV at SPring-8 Angstrom Compact Free Electron Laser (SACLA), and the mirror shape was then directly corrected by employing a differential deposition method. The accuracies of these processes were carefully investigated, considering the accuracy required for diffraction-limited focusing. The wavefront produced by the corrected multilayer focusing mirrors was characterized again in the same manner, revealing that the root mean square of the wavefront aberration was improved from 2.7 (3.3) rad to 0.52 (0.82) rad in the vertical (horizontal) direction. A wave-optical simulator indicated that these wavefront-corrected multilayer focusing mirrors are capable of achieving sub-10-nm X-ray focusing.

7.
Phys Rev Lett ; 120(22): 223902, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906133

RESUMEN

Nonlinear optical frequency conversion has been challenged to move down to the extreme ultraviolet and x-ray region. However, the extremely low signals have allowed researchers to only perform transmission experiments of the gas phase or ultrathin films. Here, we report second harmonic generation (SHG) of the reflected beam of a soft x-ray free-electron laser from a solid, which is enhanced by the resonant effect. The observation revealed that the double resonance condition can be met by absorption edges for transition metal oxides in the soft x-ray range, and this suggests that the resonant SHG technique can be applicable to a wide range of materials. We discuss the possibility of element-selective SHG spectroscopy measurements in the soft x-ray range.

8.
Phys Rev Lett ; 118(7): 071803, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28256869

RESUMEN

We report on new results of a search for a two-photon interaction with axionlike particles (ALPs). The experiment is carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we develop a novel pulsed-magnet system, composed of multiple racetrack magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing a vacuum with high intensity fields. The data obtained with a total of 27 676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass ≲0.1 eV.

9.
J Synchrotron Radiat ; 24(Pt 1): 196-204, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009559

RESUMEN

Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

10.
Nat Commun ; 7: 13477, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917867

RESUMEN

In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

11.
Faraday Discuss ; 194: 537-562, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27797386

RESUMEN

We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CH3I). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (C4H3IN2O2, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CH3I and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.

12.
Faraday Discuss ; 194: 621-638, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711803

RESUMEN

The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting X-ray diffraction data and X-ray emission spectra, using an energy dispersive spectrometer, at ambient conditions, and used this approach to study the room temperature structure and intermediate states of the photosynthetic water oxidizing metallo-protein, photosystem II. Moreover, we have also used this setup to simultaneously collect the X-ray emission spectra from multiple metals to follow the ultrafast dynamics of light-induced charge transfer between multiple metal sites. A Mn-Ti containing system was studied at an XFEL to demonstrate the efficacy and potential of this method.


Asunto(s)
Cristalografía por Rayos X , Electrones , Rayos Láser , Catálisis , Rayos X
13.
Nat Mater ; 15(6): 601-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27159018

RESUMEN

Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.


Asunto(s)
Iridio/química , Campos Magnéticos , Simulación de Dinámica Molecular , Estroncio/química , Superconductividad
14.
Rev Sci Instrum ; 86(9): 093104, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26429426

RESUMEN

We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (∼4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

15.
Sci Rep ; 5: 10977, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077863

RESUMEN

Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.

16.
Phys Rev Lett ; 115(25): 256405, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26722935

RESUMEN

We study the electronic structure of bulk single crystals and epitaxial films of Fe_{3}O_{4}. Fe 2p core level spectra show clear differences between hard x-ray (HAX) and soft x-ray photoemission spectroscopy (PES). The bulk-sensitive spectra exhibit temperature (T) dependence across the Verwey transition, which is missing in the surface-sensitive spectra. By using an extended impurity Anderson full-multiplet model-and in contrast to an earlier peak assignment-we show that the two distinct Fe species (A and B site) and the charge modulation at the B site are responsible for the newly found double peaks in the main peak above T_{V} and its T-dependent evolution. The Fe 2p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the contributions from magnetically distinct A and B sites. Valence band HAXPES shows a finite density of states at E_{F} for the polaronic half metal with a remnant order above T_{V} and a clear gap formation below T_{V}. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-site electronic states, consistent with resistivity and optical spectra.

17.
Struct Dyn ; 2(3): 034901, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26798796

RESUMEN

Time-resolved X-ray absorption spectroscopy was performed for aqueous ammonium iron(III) oxalate trihydrate solutions using an X-ray free electron laser and a synchronized ultraviolet laser. The spectral and time resolutions of the experiment were 1.3 eV and 200 fs, respectively. A femtosecond 268 nm pulse was employed to excite [Fe(III)(C2O4)3](3-) in solution from the high-spin ground electronic state to ligand-to-metal charge transfer state(s), and the subsequent dynamics were studied by observing the time-evolution of the X-ray absorption spectrum near the Fe K-edge. Upon 268 nm photoexcitation, the Fe K-edge underwent a red-shift by more than 4 eV within 140 fs; however, the magnitude of the redshift subsequently diminished within 3 ps. The Fe K-edge of the photoproduct remained lower in energy than that of [Fe(III)(C2O4)3](3-). The observed red-shift of the Fe K-edge and the spectral feature of the product indicate that Fe(III) is upon excitation immediately photoreduced to Fe(II), followed by ligand dissociation from Fe(II). Based on a comparison of the X-ray absorption spectra with density functional theory calculations, we propose that the dissociation proceeds in two steps, forming first [(CO2 (•))Fe(II)(C2O4)2](3-) and subsequently [Fe(II)(C2O4)2](2-).

18.
Phys Rev Lett ; 112(16): 163901, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815649

RESUMEN

We report clear experimental evidence for second harmonic generation at hard x-ray wavelengths. Using a 1.7 Å pumping beam generated by a free electron laser, we observe second harmonic generation in diamond. The generated second harmonic is of order 10 times the background radiation, scales quadratically with pump pulse energy, and is generated over a narrow phase-matching condition. Of importance for future experiments, our results indicate that it is possible to observe nonlinear x-ray processes in crystals at pump intensities exceeding 1016 W/cm2.

19.
Opt Express ; 22(24): 30004-12, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606930

RESUMEN

The accurate measurement of the arrival time of a hard X-ray free electron laser (FEL) pulse with respect to a laser is of utmost importance for pump-probe experiments proposed or carried out at FEL facilities around the world. This manuscript presents the latest device to meet this challenge, a THz streak camera using Xe gas clusters, capable of pulse arrival time measurements with an estimated accuracy of several femtoseconds. An experiment performed at SACLA demonstrates the performance of the device at photon energies between 5 and 10 keV with variable photon beam parameters.


Asunto(s)
Electrones , Rayos Láser , Luz , Fotograbar/instrumentación , Radiación Terahertz , Xenón/química , Fotones , Factores de Tiempo , Rayos X
20.
J Phys Condens Matter ; 25(41): 415601, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24047823

RESUMEN

We have investigated the Ce 4f electronic states in the Ce-doped manganites Nd(0.45-x)Ce(x)Sr0.55MnO3 (NCSMO) by means of x-ray absorption spectroscopy (XAS) and hard x-ray photoelectron spectroscopy (HAXPES). The Ce 3d XAS shows that the Ce ions exist in the form of the Ce(3+) and Ce(4+) mixed-valent states, and we have found that the XAS spectral features change with temperature. The Ce 3d XAS and HAXPES spectra for NCSMO agree reasonably well with calculated results based on the single-impurity Anderson model, which takes into account the atomic multiplets and two valence bands. The estimated Ce bulk valence of Nd0.15Ce0.3Sr0.55MnO3 decreases from 3.44 to 3.30 with cooling.


Asunto(s)
Cesio/química , Modelos Químicos , Modelos Moleculares , Espectroscopía de Fotoelectrones , Espectroscopía de Absorción de Rayos X , Simulación por Computador , Conductividad Eléctrica , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...