Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(36): 6872-6887, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737167

RESUMEN

Neuronal progenitors in the developing forebrain undergo dynamic competence states to ensure timely generation of specific excitatory and inhibitory neuronal subtypes from distinct neurogenic niches of the dorsal and ventral forebrain, respectively. Here we show evidence of progenitor plasticity when Sonic hedgehog (SHH) signaling is left unmodulated in the embryonic neocortex of the mammalian dorsal forebrain. We found that, at early stages of corticogenesis, loss of Suppressor of Fused (Sufu), a potent inhibitor of SHH signaling, in neocortical progenitors, altered the transcriptomic landscape of male mouse embryos. Ectopic activation of SHH signaling occurred, via degradation of Gli3R, resulting in significant upregulation of fibroblast growth factor 15 (FGF15) gene expression in all E12.5 Sufu-cKO neocortex regardless of sex. Consequently, activation of FGF signaling, and its downstream effector the MAPK signaling, facilitated expression of genes characteristic of ventral forebrain progenitors. Our studies identify the importance of modulating extrinsic niche signals such as SHH and FGF15, to maintain the competency and specification program of neocortical progenitors throughout corticogenesis.SIGNIFICANCE STATEMENT Low levels of FGF15 control progenitor proliferation and differentiation during neocortical development, but little is known on how FGF15 expression is maintained. Our studies identified SHH signaling as a critical activator of FGF15 expression during corticogenesis. We found that Sufu, via Gli3R, ensured low levels of FGF15 was expressed to prevent abnormal specification of neocortical progenitors. These studies advance our knowledge on the molecular mechanisms guiding the generation of specific neocortical neuronal lineages, their implications in neurodevelopmental diseases, and may guide future studies on how progenitor cells may be used for brain repair.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Neocórtex/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Femenino , Factores de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog/genética , Masculino , Ratones , Neocórtex/embriología , Células-Madre Neurales/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Regulación hacia Arriba
2.
Biol Open ; 8(6)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142467

RESUMEN

The ventricular-subventricular zone (V-SVZ) of the forebrain is the source of neurogenic stem/precursor cells for adaptive and homeostatic needs throughout the life of most mammals. Here, we report that Suppressor of Fused (Sufu) plays a critical role in the establishment of the V-SVZ at early neonatal stages by controlling the proliferation of distinct subpopulations of stem/precursor cells. Conditional deletion of Sufu in radial glial progenitor cells (RGCs) at E13.5 resulted in a dramatic increase in the proliferation of Sox2+ Type B1 cells. In contrast, we found a significant decrease in Gsx2+ and a more dramatic decrease in Tbr2+ transit amplifying cells (TACs) indicating that innate differences between dorsal and ventral forebrain derived Type B1 cells influence Sufu function. However, many precursors accumulated in the dorsal V-SVZ or failed to survive, demonstrating that despite the over-proliferation of Type B1 cells, they are unable to transition into functional differentiated progenies. These defects were accompanied by reduced Gli3 expression and surprisingly, a significant downregulation of Sonic hedgehog (Shh) signaling. Therefore, these findings indicate a potential role of the Sufu-Gli3 regulatory axis in the neonatal dorsal V-SVZ independent of Shh signaling in the establishment and survival of functional stem/precursor cells in the postnatal dorsal V-SVZ.

3.
Brain Plast ; 3(2): 119-128, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30151337

RESUMEN

The mammalian neocortex is composed of a diverse population of neuronal and glial cells that are crucial for cognition and consciousness. Orchestration of molecular events that lead to the production of distinct cell lineages is now a major research focus. Recent studies in mammalian animal models reveal that Sonic Hedgehog (Shh) signaling plays crucial roles in this process. In this review, we will evaluate these studies and provide insights on how Shh signaling specifically influence cortical development, beyond its established roles in telencephalic patterning, by specifically focusing on its impact on cells derived from the cortical radial glial (RG) cells. We will also assess how these findings further advance our knowledge of neurological diseases and discuss potential roles of targeting Shh signaling in therapies.

4.
J Neurosci ; 38(23): 5237-5250, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29739868

RESUMEN

Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neocórtex/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Oligodendroglía/citología , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Noqueados , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología
5.
J Dev Biol ; 4(4)2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28781964

RESUMEN

Neural progenitors in the embryonic neocortex must be tightly regulated in order to generate the correct number and projection neuron subtypes necessary for the formation of functional neocortical circuits. In this study, we show that the intracellular protein Suppressor of Fused (Sufu) regulates the proliferation of intermediate progenitor (IP) cells at later stages of corticogenesis to affect the number of Cux1+ upper layer neurons in the postnatal neocortex. This correlates with abnormal levels of the repressor form of Gli3 (Gli3R) and the ectopic expression of Patched 1 (Ptch1), a Sonic Hedgehog (Shh) target gene. These studies reveal that the canonical role of Sufu as an inhibitor of Shh signaling is conserved at later stages of corticogenesis and that Sufu plays a crucial role in regulating neuronal number by controlling the cell cycle dynamics of IP cells in the embryonic neocortex.

6.
Opera Med Physiol ; 2(3-4): 181-187, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28795171

RESUMEN

Isolated brain tumors contain cells that exhibit stem cell features and a tissue microenvironment bearing remarkable similarities to the normal neurogenic niche. This supports the idea that neural stem (NSCs) or progenitor cells, and their progeny are the likely tumor cell(s) of origin. This prompted the investigation of the relationship between NSCs/progenitors and the initiation of tumorigenesis. These studies led to the identification of common signaling machineries underlying NSC development and tumor formation, particularly those with known roles in proliferation and cell fate determination. This review will explore the molecular mechanisms that regulate NSC behavior in the neurogenic niche of the forebrain, and how deregulation of the developmental potential of NSCs might contribute to tumorigenesis.

7.
Cell Rep ; 12(12): 2021-34, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26387942

RESUMEN

Proper lineage progression and diversification of neural progenitor cells (NPCs) ensures the generation of projection neuron (PN) subtypes in the mammalian neocortex. Here, we show that Suppressor of Fused (Sufu) controls PN specification by maintaining the identity of NPCs in the embryonic neocortex. Deletion of Sufu in NPCs of the E10.5 mouse neocortex led to improper specification of progenitors and a reduction in intermediate progenitors (IPs) during corticogenesis. We found that Sufu deletion resulted in unstable Gli2 and Gli3 activity, leading to the ectopic activation of Sonic hedgehog (Shh) signaling. The role of Sufu in maintaining progenitor identity is critical at early stages of corticogenesis, since deletion of Sufu at E13.5 did not cause similar abnormalities. Our studies revealed that Sufu critically modulates Shh signaling at early stages of neurogenesis for proper specification and maintenance of cortical NPCs to ensure the appropriate generation of cortical PN lineages.


Asunto(s)
Proteínas Hedgehog/genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Represoras/genética , Animales , Diferenciación Celular , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Noqueados , Neocórtex/embriología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/deficiencia , Transducción de Señal , Factores de Tiempo , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...