Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Genomics ; 25(1): 344, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580899

RESUMEN

BACKGROUND: Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS: We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS: The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.


Asunto(s)
Proteínas Cromosómicas no Histona , Desmetilación del ADN , Epigénesis Genética , Animales , Femenino , Ratones , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Genoma , Células Germinativas/metabolismo , Mamíferos/genética
2.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
3.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669113

RESUMEN

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Femenino , Animales , Ratones , Reprogramación Celular , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Estructuras Cromosómicas , Cohesinas
4.
Life Sci Alliance ; 5(12)2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944930

RESUMEN

Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell-level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data.


Asunto(s)
Análisis de Datos , Análisis de la Célula Individual , Análisis por Conglomerados , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
5.
EMBO J ; 41(18): e110815, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35912849

RESUMEN

In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.


Asunto(s)
Meiosis , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Ratones , Oocitos , Oogénesis/fisiología , Ovario
6.
EMBO J ; 41(13): e110600, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35703121

RESUMEN

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Asunto(s)
Epigénesis Genética , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigenómica , Femenino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Ratones , Espermatogonias
7.
Science ; 374(6570): eabd8887, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34793202

RESUMEN

X chromosome dosage compensation ensures balanced gene dosage between the X chromosome and autosomes and between the sexes, involving divergent mechanisms among mammals. We elucidated a distinct mechanism for X chromosome inactivation (XCI) in cynomolgus monkeys, a model for human development. The trophectoderm and cytotrophoblast acquire XCI around implantation through an active intermediate bearing repressive modifications and compacted structure, whereas the amnion, epiblast, and hypoblast maintain such an intermediate protractedly, attaining XCI by a week after implantation. Males achieve X chromosome up-regulation (XCU) progressively, whereas females show XCU coincidentally with XCI, both establishing the X:autosome dosage compensation by 1 week after implantation. Conversely, primordial germ cells undergo X chromosome reactivation by reversing the XCI pathway early during their development. Our findings establish a foundation for clarifying the dosage compensation mechanisms in primates, including humans.


Asunto(s)
Blastocisto/fisiología , Compensación de Dosificación (Genética) , Macaca fascicularis/embriología , Macaca fascicularis/genética , Trofoblastos/fisiología , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Células Germinativas/fisiología , Histonas/metabolismo , Metilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Cromosoma X/metabolismo , Cromosoma X/ultraestructura
8.
Cell Rep ; 37(5): 109909, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731633

RESUMEN

Human induced pluripotent stem cells (hiPSCs) show variable differentiation potential due to their epigenomic heterogeneity, whose extent/attributes remain unclear, except for well-studied elements/chromosomes such as imprints and the X chromosomes. Here, we show that seven hiPSC lines with variable germline potential exhibit substantial epigenomic heterogeneity, despite their uniform transcriptomes. Nearly a quarter of autosomal regions bear potentially differential chromatin modifications, with promoters/CpG islands for H3K27me3/H2AK119ub1 and evolutionarily young retrotransposons for H3K4me3. We identify 145 large autosomal blocks (≥100 kb) with differential H3K9me3 enrichment, many of which are lamina-associated domains (LADs) in somatic but not in embryonic stem cells. A majority of these epigenomic heterogeneities are independent of genetic variations. We identify an X chromosome state with chromosome-wide H3K9me3 that stably prevents X chromosome erosion. Importantly, the germline potential of female hiPSCs correlates with X chromosome inactivation. We propose that inherent genomic properties, including CpG density, transposons, and LADs, engender epigenomic heterogeneity in hiPSCs.


Asunto(s)
Cromosomas Humanos X , Epigénesis Genética , Epigenoma , Heterogeneidad Genética , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Inactivación del Cromosoma X , Diferenciación Celular , Línea Celular , Ensamble y Desensamble de Cromatina , Islas de CpG , Elementos Transponibles de ADN , Epigenómica , Evolución Molecular , Humanos , Metilación , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Cell Stem Cell ; 28(12): 2167-2179.e9, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34496297

RESUMEN

Mammalian male germ-cell development consists of three distinct phases: primordial germ cell (PGC) development, male germ-cell specification for spermatogonium development, and ensuing spermatogenesis. Here, we show an in vitro reconstitution of whole male germ-cell development by pluripotent stem cells (PSCs). Mouse embryonic stem cells (mESCs) are induced into PGC-like cells (mPGCLCs), which are expanded for epigenetic reprogramming. In reconstituted testes under an optimized condition, such mPGCLCs differentiate into spermatogonium-like cells with proper developmental transitions, gene expression, and cell-cycle dynamics and are expanded robustly as germline stem cell-like cells (GSCLCs) with an appropriate androgenetic epigenome. Importantly, GSCLCs show vigorous spermatogenesis, not only upon transplantation into testes in vivo but also under an in vitro culture of testis transplants, and the resultant spermatids contribute to fertile offspring. By uniting faithful recapitulations of the three phases of male germ-cell development, our study creates a paradigm for the in vitro male gametogenesis by PSCs.


Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Epigenómica , Células Germinativas , Masculino , Ratones , Espermatogénesis , Espermatogonias
10.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34087104

RESUMEN

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Asunto(s)
Transformación Celular Neoplásica , Epitelio/crecimiento & desarrollo , Receptores de Hialuranos/metabolismo , Colágenos no Fibrilares/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Perros , Ferroptosis , Humanos , Células de Riñón Canino Madin Darby , Potencial de la Membrana Mitocondrial , Ratones , Especies Reactivas de Oxígeno
11.
Cell Rep ; 35(5): 109075, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33951437

RESUMEN

In the early fetal stage, the gonads are bipotent and only later become the ovary or testis, depending on the genetic sex. Despite many studies examining how sex determination occurs from biopotential gonads, the spatial and temporal organization of bipotential gonads and their progenitors is poorly understood. Here, using lineage tracing in mice, we find that the gonads originate from a T+ primitive streak through WT1+ posterior intermediate mesoderm and appear to share origins anteriorly with the adrenal glands and posteriorly with the metanephric mesenchyme. Comparative single-cell transcriptomic analyses in mouse and cynomolgus monkey embryos reveal the convergence of the lineage trajectory and genetic programs accompanying the specification of biopotential gonadal progenitor cells. This process involves sustained expression of epithelial genes and upregulation of mesenchymal genes, thereby conferring an epithelial-mesenchymal hybrid state. Our study provides key resources for understanding early gonadogenesis in mice and primates.


Asunto(s)
Células Madre Adultas/metabolismo , Gónadas/fisiología , Animales , Diferenciación Celular , Macaca fascicularis , Masculino , Ratones
12.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608411

RESUMEN

The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.


Asunto(s)
Células Germinativas/metabolismo , Factores de Transcripción SOXF/metabolismo , Factor de Transcripción AP-2/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Células Germinativas/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Macaca fascicularis , Ratones , Ratones Endogámicos ICR , Factores de Transcripción SOXF/genética , Transducción de Señal/genética , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo
13.
Biol Reprod ; 104(2): 344-360, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079185

RESUMEN

Primordial germ cells (PGCs) are the founding population of the germ cell lineage that undergo a multistep process to generate spermatozoa or oocytes. Establishing an appropriate culture system for PGCs is a key challenge in reproductive biology. By a chemical screening using mouse PGC-like cells (mPGCLCs), which were induced from mouse embryonic stem cells, we reported previously that forskolin and rolipram synergistically enhanced the proliferation/survival of mPGCLCs with an average expansion rate of ~20-fold. In the present study, we evaluated other chemicals or cytokines to see whether they would improve the current mPGCLC culture system. Among the chemicals and cytokines examined, in the presence of forskolin and rolipram, cyclosporin A (CsA) and fibroblast growth factors (FGFs: FGF2 and FGF10) effectively enhanced the expansion of mPGCLCs in vitro (~50-fold on average). During the expansion by CsA or FGFs, mPGCLCs comprehensively erased their DNA methylation to acquire a profile equivalent to that of gonadal germ cells in vivo, while maintaining their highly motile phenotype as well as their transcriptional properties as sexually uncommitted PGCs. Importantly, these mPGCLCs robustly contributed to spermatogenesis and produced fertile offspring. Furthermore, mouse PGCs (mPGCs) cultured with CsA ex vivo showed transcriptomes and DNA methylomes similar to those of cultured mPGCLCs. The improved culture system for mPGCLCs/mPGCs would be instructive for addressing key questions in PGC biology, including the mechanisms for germ cell migration, epigenetic reprogramming, and sex determination of the germline.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Germinativas/efectos de los fármacos , Animales , Apoptosis , Ciclo Celular , Proliferación Celular/fisiología , Colforsina/farmacología , Inhibidores Enzimáticos/farmacología , Células Germinativas/fisiología , Ratones , Rolitetraciclina/farmacología , Transducción de Señal/efectos de los fármacos , Secuenciación Completa del Genoma
14.
EMBO J ; 39(21): e104929, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32954504

RESUMEN

Human germ cells perpetuate human genetic and epigenetic information. However, the underlying mechanism remains elusive, due to a lack of appropriate experimental systems. Here, we show that human primordial germ cell-like cells (hPGCLCs) derived from human-induced pluripotent stem cells (hiPSCs) can be propagated to at least ~106 -fold over a period of 4 months under a defined condition in vitro. During expansion, hPGCLCs maintain an early hPGC-like transcriptome and preserve their genome-wide DNA methylation profiles, most likely due to retention of maintenance DNA methyltransferase activity. These characteristics contrast starkly with those of mouse PGCLCs, which, under an analogous condition, show a limited propagation (up to ~50-fold) and persist only around 1 week, yet undergo cell-autonomous genome-wide DNA demethylation. Importantly, upon aggregation culture with mouse embryonic ovarian somatic cells in xenogeneic-reconstituted ovaries, expanded hPGCLCs initiate genome-wide DNA demethylation and differentiate into oogonia/gonocyte-like cells, demonstrating their germline potential. By creating a paradigm for hPGCLC expansion, our study uncovers critical divergences in expansion potential and the mechanism for epigenetic reprogramming between the human and mouse germ cell lineage.


Asunto(s)
Células Germinativas/metabolismo , Ovario/embriología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Desmetilación del ADN , Metilación de ADN , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Epigenómica , Femenino , Genoma , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones
15.
Science ; 367(6482)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32054698

RESUMEN

Sex determination of germ cells is vital to creating the sexual dichotomy of germ cell development, thereby ensuring sexual reproduction. However, the underlying mechanisms remain unclear. Here, we show that ZGLP1, a conserved transcriptional regulator with GATA-like zinc fingers, determines the oogenic fate in mice. ZGLP1 acts downstream of bone morphogenetic protein, but not retinoic acid (RA), and is essential for the oogenic program and meiotic entry. ZGLP1 overexpression induces differentiation of in vitro primordial germ cell-like cells (PGCLCs) into fetal oocytes by activating the oogenic programs repressed by Polycomb activities, whereas RA signaling contributes to oogenic program maturation and PGC program repression. Our findings elucidate the mechanism for mammalian oogenic fate determination, providing a foundation for promoting in vitro gametogenesis and reproductive medicine.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oocitos/fisiología , Oogénesis/genética , Proteínas Represoras/fisiología , Diferenciación Sexual/genética , Factores de Transcripción/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Femenino , Feto/citología , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Oocitos/citología , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/genética , Procesos de Determinación del Sexo , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma , Tretinoina/fisiología
16.
Biol Reprod ; 102(3): 620-638, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31724030

RESUMEN

In vitro reconstitution of germ-cell development from pluripotent stem cells (PSCs) has created key opportunities to explore the fundamental mechanisms underlying germ-cell development, particularly in mice and humans. Importantly, such investigations have clarified critical species differences in the mechanisms regulating mouse and human germ-cell development, highlighting the necessity of establishing an in vitro germ-cell development system in other mammals, such as non-human primates. Here, we show that multiple lines of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in cynomolgus monkeys (Macaca fascicularis; cy) can be maintained stably in an undifferentiated state under a defined condition with an inhibitor for WNT signaling, and such PSCs are induced efficiently into primordial germ cell-like cells (PGCLCs) bearing a transcriptome similar to early cyPGCs. Interestingly, the induction kinetics of cyPGCLCs from cyPSCs is faster than that of human (h) PGCLCs from hPSCs, and while the transcriptome dynamics during cyPGCLC induction is relatively similar to that during hPGCLC induction, it is substantially divergent from that during mouse (m) PGCLC induction. Our findings delineate common as well as species-specific traits for PGC specification, creating a foundation for parallel investigations into the mechanism for germ-cell development in mice, monkeys, and humans.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes/citología , Animales , Células Madre Pluripotentes Inducidas/citología , Macaca fascicularis , Transcriptoma
17.
Science ; 362(6412): 356-360, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30237246

RESUMEN

Human in vitro gametogenesis may transform reproductive medicine. Human pluripotent stem cells (hPSCs) have been induced into primordial germ cell-like cells (hPGCLCs); however, further differentiation to a mature germ cell has not been achieved. Here, we show that hPGCLCs differentiate progressively into oogonia-like cells during a long-term in vitro culture (approximately 4 months) in xenogeneic reconstituted ovaries with mouse embryonic ovarian somatic cells. The hPGCLC-derived oogonia display hallmarks of epigenetic reprogramming-genome-wide DNA demethylation, imprint erasure, and extinguishment of aberrant DNA methylation in hPSCs-and acquire an immediate precursory state for meiotic recombination. Furthermore, the inactive X chromosome shows a progressive demethylation and reactivation, albeit partially. These findings establish the germline competence of hPSCs and provide a critical step toward human in vitro gametogenesis.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/citología , Oogénesis , Oogonios/citología , Ovario/crecimiento & desarrollo , Metilación de ADN , Epigénesis Genética , Femenino , Humanos
18.
Cell Stem Cell ; 21(4): 517-532.e5, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985527

RESUMEN

Germline specification underlies human reproduction and evolution, but it has proven difficult to study in humans since it occurs shortly after blastocyst implantation. This process can be modeled with human induced pluripotent stem cells (hiPSCs) by differentiating them into primordial germ cell-like cells (hPGCLCs) through an incipient mesoderm-like cell (iMeLC) state. Here, we elucidate the key transcription factors and their interactions with important signaling pathways in driving hPGCLC differentiation from iPSCs. Germline competence of iMeLCs is dictated by the duration and dosage of WNT signaling, which induces expression of EOMES to activate SOX17, a key driver of hPGCLC specification. Upon hPGCLC induction, BMP signaling activates TFAP2C in a SOX17-independent manner. SOX17 and TFAP2C then cooperatively instate an hPGCLC transcriptional program, including BLIMP1 expression. This specification program diverges from its mouse counterpart regarding key transcription factors and their hierarchies, and it provides a foundation for further study of human germ cell development.


Asunto(s)
Evolución Biológica , Linaje de la Célula , Células Germinativas/citología , Células Madre Pluripotentes/citología , Transducción de Señal/genética , Transcripción Genética , Animales , Linaje de la Célula/genética , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Primates , Factores de Transcripción/metabolismo , Transcriptoma/genética , Vía de Señalización Wnt/genética
19.
Nucleic Acids Res ; 45(21): 12152-12169, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981894

RESUMEN

Single transcription factors (TFs) regulate multiple developmental pathways, but the underlying mechanisms remain unclear. Here, we quantitatively characterized the genome-wide occupancy profiles of BLIMP1, a key transcriptional regulator for diverse developmental processes, during the development of three germ-layer derivatives (photoreceptor precursors, embryonic intestinal epithelium and plasmablasts) and the germ cell lineage (primordial germ cells). We identified BLIMP1-binding sites shared among multiple developmental processes, and such sites were highly occupied by BLIMP1 with a stringent recognition motif and were located predominantly in promoter proximities. A subset of bindings common to all the lineages exhibited a new, strong recognition sequence, a GGGAAA repeat. Paradoxically, however, the shared/common bindings had only a slight impact on the associated gene expression. In contrast, BLIMP1 occupied more distal sites in a cell type-specific manner; despite lower occupancy and flexible sequence recognitions, such bindings contributed effectively to the repression of the associated genes. Recognition motifs of other key TFs in BLIMP1-binding sites had little impact on the expression-level changes. These findings suggest that the shared/common sites might serve as potential reservoirs of BLIMP1 that functions at the specific sites, providing the foundation for a unified understanding of the genome regulation by BLIMP1, and, possibly, TFs in general.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Animales , Sitios de Unión , Diferenciación Celular/genética , ADN/química , ADN/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Técnicas de Sustitución del Gen , Genoma , Células Germinativas/metabolismo , Masculino , Ratones , Motivos de Nucleótidos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética
20.
EMBO J ; 36(21): 3100-3119, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28928204

RESUMEN

The mechanism for sex determination in mammalian germ cells remains unclear. Here, we reconstitute the female sex determination in mouse germ cells in vitro under a defined condition without the use of gonadal somatic cells. We show that retinoic acid (RA) and its key effector, STRA8, are not sufficient to induce the female germ-cell fate. In contrast, bone morphogenetic protein (BMP) and RA synergistically induce primordial germ cells (PGCs)/PGC-like cells (PGCLCs) derived from embryonic stem cells (ESCs) into fetal primary oocytes. The induction is characterized by entry into the meiotic prophase, occurs synchronously and recapitulates cytological and transcriptome progression in vivo faithfully. Importantly, the female germ-cell induction necessitates a proper cellular competence-most typically, DNA demethylation of relevant genes-which is observed in appropriately propagated PGCs/PGCLCs, but not in PGCs/PGCLCs immediately after induction. This provides an explanation for the differential function of BMP signaling between PGC specification and female germ-cell induction. Our findings represent a framework for a comprehensive delineation of the sex-determination pathway in mammalian germ cells, including humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Morfogenéticas Óseas/farmacología , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias de Ratones/efectos de los fármacos , Oocitos/efectos de los fármacos , Tretinoina/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Femenino , Feto , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oocitos/citología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Profase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesos de Determinación del Sexo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA