Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 766, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140242

RESUMEN

Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein-protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription.


Asunto(s)
Mapas de Interacción de Proteínas , Factores de Transcripción , Biotinilación , Cromatina , Cromatografía de Afinidad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Factores de Transcripción NFI/genética , Proteómica
2.
iScience ; 23(2): 100871, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32062451

RESUMEN

The RET proto-oncogene encodes receptor tyrosine kinase, expressed primarily in tissues of neural crest origin. De-regulation of RET signaling is implicated in several human cancers. Recent phosphatome interactome analysis identified PTPRA interacting with the neurotrophic factor (GDNF)-dependent RET-Ras-MAPK signaling-axis. Here, by identifying comprehensive interactomes of PTPRA and RET, we reveal their close physical and functional association. The PTPRA directly interacts with RET, and using the phosphoproteomic approach, we identify RET as a direct dephosphorylation substrate of PTPRA both in vivo and in vitro. The protein phosphatase domain-1 is indispensable for the PTPRA inhibitory role on RET activity and downstream Ras-MAPK signaling, whereas domain-2 has only minor effect. Furthermore, PTPRA also regulates the RET oncogenic mutant variant MEN2A activity and invasion capacity, whereas the MEN2B is insensitive to PTPRA. In sum, we discern PTPRA as a novel regulator of RET signaling in both health and cancer.

3.
EMBO Mol Med ; 10(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30108113

RESUMEN

Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inestabilidad de Microsatélites , Mutación Puntual , Redes Reguladoras de Genes , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
4.
Dev Cell ; 43(2): 240-252.e5, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065309

RESUMEN

Ribosome biogenesis regulates animal growth and is controlled by nutrient-responsive mTOR signaling. How ribosome biogenesis is regulated during the developmental growth of animals and how nutrient-responsive signaling adjusts ribosome biogenesis in this setting have remained insufficiently understood. We uncover PWP1 as a chromatin-associated regulator of developmental growth with a conserved role in RNA polymerase I (Pol I)-mediated rRNA transcription. We further observed that PWP1 epigenetically maintains the rDNA loci in a transcription-competent state. PWP1 responds to nutrition in Drosophila larvae via mTOR signaling through gene expression and phosphorylation, which controls the nucleolar localization of dPWP1. Our data further imply that dPWP1 acts synergistically with mTOR signaling to regulate the nucleolar localization of TFIIH, a known elongation factor of Pol I. Ribosome biogenesis is often deregulated in cancer, and we demonstrate that high PWP1 levels in human head and neck squamous cell carcinoma tumors are associated with poor prognosis.


Asunto(s)
Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Alimentos , Regulación de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Proteínas Nucleares/metabolismo , Ribosomas/genética , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , ADN Ribosómico/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Proteínas Nucleares/genética , Fosforilación , Pronóstico , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Transducción de Señal , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
5.
Nat Commun ; 8: 15017, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497795

RESUMEN

Engineering light-sensitive protein regulators has been a tremendous multidisciplinary challenge. Optogenetic regulators of MAPKs, central nodes of cellular regulation, have not previously been described. Here we present OptoJNKi, a light-regulated JNK inhibitor based on the AsLOV2 light-sensor domain using the ubiquitous FMN chromophore. OptoJNKi gene-transfer allows optogenetic applications, whereas protein delivery allows optopharmacology. Development of OptoJNKi suggests a design principle for other optically regulated inhibitors. From this, we generate Optop38i, which inhibits p38MAPK in intact illuminated cells. Neurons are known for interpreting temporally-encoded inputs via interplay between ion channels, membrane potential and intracellular calcium. However, the consequences of temporal variation of JNK-regulating trophic inputs, potentially resulting from synaptic activity and reversible cellular protrusions, on downstream targets are unknown. Using OptoJNKi, we reveal maximal regulation of c-Jun transactivation can occur at unexpectedly slow periodicities of inhibition depending on the inhibitor's subcellular location. This provides evidence for resonance in metazoan JNK-signalling circuits.


Asunto(s)
Neuronas/efectos de los fármacos , Optogenética/métodos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Avena/genética , Avena/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Diseño de Fármacos , Femenino , Células HEK293 , Humanos , Luz , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Masculino , Neuronas/metabolismo , Neuronas/efectos de la radiación , Fototropinas/química , Fototropinas/genética , Fototropinas/metabolismo , Inhibidores de Proteínas Quinasas/química , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Cell Syst ; 4(4): 430-444.e5, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28330616

RESUMEN

Coordinated activities of protein kinases and phosphatases ensure phosphorylation homeostasis, which, when perturbed, can instigate diseases, including cancer. Yet, in contrast to kinases, much less is known about protein phosphatase functions and their interactions and complexes. Here, we used quantitative affinity proteomics to assay protein-protein interactions for 54 phosphatases distributed across the three major protein phosphatase families, with additional analysis of their 12 co-factors. We identified 838 high-confidence interactions, of which 631, to our knowledge, have not been reported before. We show that inhibiting the activity of phosphatases PP1 and PP2A by okadaic acid disrupts their specific interactions, supporting the potential of therapeutics that target these proteins. Additional analyses revealed candidate physical and functional interaction links to phosphatase-based regulation of several signaling pathways and to human cancer. Our study provides an initial glimpse of the protein interaction landscape of phosphatases and their functions in cellular regulation.


Asunto(s)
Fosfoproteínas Fosfatasas/fisiología , Mapas de Interacción de Proteínas , Humanos , Espectrometría de Masas , Neoplasias/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Proteoma , Proteómica , Transducción de Señal , Purificación por Afinidad en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...