Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Immunol ; 258: 109872, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113963

RESUMEN

Pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) is a life-threatening respiratory failure associated with high mortality. Despite progress in our understanding of the pathological mechanism causing the crippling illness, there are currently no targeted pharmaceutical treatments available for it. Recent discoveries have emphasized the existence of a potential nexus between gut and lung health fueling novel approaches including probiotics for the treatment of ARDS. We thus investigated the prophylactic-potential of Lactobacillus rhamnosus-(LR) in lipopolysaccharide (LPS)-induced pulmonary and cecal ligation puncture (CLP) induced extrapulmonary ARDS mice. Our in-vivo findings revealed that pretreatment with LR significantly ameliorated vascular-permeability (edema) of the lungs via modulating the neutrophils along with significantly reducing the expression of inflammatory-cytokines in the BALF, lungs and serum in both pulmonary and extrapulmonary mice-models. Interestingly, our ex-vivo immunofluorescence and flow cytometric data suggested that mechanistically LR via short chain fatty acids (butyrate being the most potent and efficient in ameliorating the pathophysiology of both pulmonary and extra-pulmonary ARDS) targets the phagocytic and neutrophils extracellular traps (NETs) releasing potential of neutrophils. Moreover, our in-vivo data further corroborated our ex-vivo findings and suggested that butyrate exhibits enhanced potential in ameliorating the pathophysiology of ARDS via reducing the infiltration of neutrophils into the lungs. Altogether, our study establishes the prophylactic role of LR and its associated metabolites in the prevention and management of both pulmonary and extrapulmonary ARDS via targeting neutrophils.


Asunto(s)
Lacticaseibacillus rhamnosus , Síndrome de Dificultad Respiratoria , Animales , Ratones , Neutrófilos/metabolismo , Pulmón/patología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/etiología , Butiratos/metabolismo , Lipopolisacáridos
2.
Viruses ; 14(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36560690

RESUMEN

The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are at risk, and thousands suffer from permanent neurological disorders across Asian countries, with 10-15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients. However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation. CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review, we discuss the neuronal and macrophage surface receptors involved in neuronal death.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Enfermedades Neurodegenerativas , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Células Endoteliales/metabolismo , Chaperón BiP del Retículo Endoplásmico , Dopamina , Enfermedades Neurodegenerativas/patología , Sistema Nervioso Central , Virus de la Encefalitis Japonesa (Subgrupo)/metabolismo , Receptores de Superficie Celular , Lectinas Tipo C/metabolismo
3.
Curr Issues Mol Biol ; 44(10): 4584-4615, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36286029

RESUMEN

Alzheimer's disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aß) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood-brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.

4.
Life (Basel) ; 12(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35888042

RESUMEN

The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes viral encephalitis leading to neural damage, is a major threat in most Asian countries. The RNA-dependent RNA polymerase (RdRp) present in the viral genome is the key component for genome replication, making it an attractive target for antiviral drug development. In this study, the natural products from Echinacea angustifolia were retrieved for structure-based virtual screening against JEV-RdRp. The top six compounds (Echinacoside, Echinacin, Rutin, Cynaroside, Quercetagetin 7-glucoside, and Kaempferol-3-glucoside) were obtained based on the highest negative docking score, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and molecular interaction. The computational analysis of these selected compounds against the co-crystallized ligands, i.e., ATP and GTP, were performed. Further, 100 ns molecular dynamic simulation and post-free binding energy calculation of all the selected compounds complexed with JEV-RdRP were performed to check the stability of the complexes. The obtained results showed considerable stability and intermolecular interaction with native ligand-binding site residues of JEV-RdRp. Hence, selected natural compounds are admissible inhibitors of JEV-RdRp protein and can be considered for future antiviral drug development studies.

5.
Arch Virol ; 167(9): 1739-1762, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654913

RESUMEN

Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Línea Celular , Niño , Virus de la Encefalitis Japonesa (Especie)/genética , Humanos , Mamíferos , Porcinos , Respuesta de Proteína Desplegada , Replicación Viral
6.
Comput Biol Med ; 142: 105231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032740

RESUMEN

The advent and persistence of the Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2)-induced Coronavirus Disease (COVID-19) pandemic since December 2019 has created the largest public health emergency in over a century. Despite the administration of multiple vaccines across the globe, there continues to be a lack of approved efficacious non-prophylactic interventions for the disease. Flavonoids are a class of phytochemicals with historically established antiviral, anti-inflammatory and antioxidative properties that are effective against cancers, type 2 diabetes mellitus, and even other human coronaviruses. To identify the most promising bioactive flavonoids against the SARS-CoV-2, this article screened a virtual library of 46 bioactive flavonoids against three promising targets in the SARS-CoV-2 life cycle: human TMPRSS2 protein, 3CLpro, and PLpro. By examining the effects of glycosylation and other structural-activity relationships, the presence of sugar moiety in flavonoids significantly reduces its binding energy. It increases the solubility of flavonoids leading to reduced toxicity and higher bioavailability. Through protein-ligand contact profiling, it was concluded that naringin formed more hydrogen bonds with TMPRSS2 and 3CLpro. In contrast, hesperidin formed a more significant number of hydrogen bonds with PLpro. These observations were complimented by the 100 ns molecular dynamics simulation and binding free energy analysis, which showed a considerable stability of docked bioflavonoids in the active site of SARS-CoV-2 target proteins. Finally, the binding affinity and stability of the selected docked complexes were compared with the reference ligands (camostat for TMPRSS2, GC376 for 3CLpro, and GRL0617 for PLpro) that strongly inhibit their respective SARS-COV-2 targets. Overall analysis revealed that the selected flavonoids could be potential therapeutic agents against SARS-CoV-2. Naringin showed better affinity and stability for TMPRSS2 and 3CLpro, whereas hesperidin showed a better binding relationship and stability for PLpro.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Compuestos de Anilina , Animales , Benzamidas , Flavonoides/farmacología , Humanos , Estadios del Ciclo de Vida , Simulación del Acoplamiento Molecular , Naftalenos , SARS-CoV-2
7.
Life (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685393

RESUMEN

Alzheimer's disease (AD) is a significant health concern with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly understood. Microfluidics exploits different microscale properties of fluids to mimic environments on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells such as microglia, and gain insights into AD pathophysiology. This review focuses on the applications and impact of microfluidics on AD research. We discuss the technical challenges and possible solutions provided by this new cutting-edge technique to understand disease-associated pathways and mechanisms.

8.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32510549

RESUMEN

Dengue virus (DENV) researchers often face challenges with the highly time-consuming process of collecting and curating information on known inhibitors during the standard drug discovery process. To this end, however, required collective information is not yet available on a single platform. Hence, we have developed the DenvInD database for experimentally validated DENV inhibitors against its known targets presently hosted at https://webs.iiitd.edu.in/raghava/denvind/. This database provides comprehensive information, i.e. PubChem IDs, SMILES, IC50, EC50, CC50, and wherever available Ki values of the 484 compounds in vitro validated as inhibitors against respective drug targets of DENV. Also, the DenvInD database has been linked to the user-friendly web-based interface and accessibility features, such as simple search, advanced search and data browsing. All the required data curation was conducted manually from the reported scientific literature and PubChem. The collected information was then organized into the DenvInD database using sequence query language under user interface by hypertext markup language. DenvInD is the first useful repository of its kind which would augment the DENV drug discovery research by providing essential information on known DENV inhibitors for molecular docking, computational screening, pharmacophore modeling and quantitative structure-activity relationship modeling.


Asunto(s)
Antivirales/química , Bases de Datos de Compuestos Químicos , Virus del Dengue , Dengue/tratamiento farmacológico , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Humanos , Relación Estructura-Actividad Cuantitativa
9.
Virusdisease ; 31(4): 453-458, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33283030

RESUMEN

The researcher community across the globe is on a search for a promising animal model that closely mimics the clinical manifestation of SARS-CoV-2. Though some developments were seen such as serial adaptation in various animal species or the creation of genetically engineered models, a suitable animal model remains elusive. A model that could display the severity of human illness and can be used for the fast-track evaluation of potential drugs as well as for the clinical trials of vaccines is an urgent need of the hour. In the light of huge information generated on SARS-CoV-2 and daily updates received from the research community, we have chosen to review the current status of animal models of SARS-CoV-2 in encompassing the areas of viral replication, transmission, active/passive immunization, clinical disease, and pathology. The review is intended to help the researchers in the selection of appropriate animal models for SARS CoV-2 research in the fight against the current global pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...