Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Trop Med Infect Dis ; 9(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39330911

RESUMEN

WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that hatch (miracidia), which infect freshwater snail vectors (also referred to as intermediate snail hosts) living in marshlands, ponds, lakes, rivers, or irrigation canals. Infective larvae (cercariae) develop within the snail, which, when released, may infect humans and/or animals in contact with the water. Snail control aims to interrupt the transmission cycle of the disease by removing the vector snails and, by so doing, indirectly improves the impact of the preventive chemotherapy by reducing reinfection. Snail control was, for many years, the only strategy for the prevention of schistosomiasis before preventive chemotherapy became the primary intervention. Snails can be controlled through various methods: environmental control, biological control, and chemical control. The chemical control of snails has proven to be the most effective method to interrupt the transmission of schistosomiasis. The current review aims to describe the vector snails of human schistosomiasis, present the chemicals and strategies for the control of snails, the challenges with the implementation, and the future needs. Snail control can play a key role in reducing schistosomiasis transmission and, thus, complements other interventions for disease control. There is a need to develop new molluscicide products or new formulations and methods of applications for existing molluscicides that would target snail vectors more specifically.

2.
Trends Parasitol ; 40(8): 731-743, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39054167

RESUMEN

Anopheles stephensi is a highly competent urban malaria vector species, endemic in South Asia and the Persian Gulf, which has colonised eight countries in sub-Saharan Africa (SSA) since 2013 and is now spreading uncontrollably. In urban areas of Africa, where malaria transmission has previously been low or non-existent, the invasion of An. stephensi represents a significant problem, particularly to immunologically naïve populations. Despite this rapidly advancing threat, there is a paucity of information regarding the bionomics of An. stephensi in SSA. Here, we offer a critical synthesis of literature from An. stephensi's native range, focusing on the future of An. stephensi in a rapidly urbanising Africa, and highlighting key questions that warrant prioritisation by the global malaria vector control community.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Anopheles/parasitología , Anopheles/fisiología , Animales , Asia/epidemiología , África/epidemiología , Malaria/prevención & control , Malaria/transmisión , Especies Introducidas , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-39027087

RESUMEN

Vector-borne diseases, including dengue, leishmaniasis and malaria, may be more common among individuals whose occupations or behaviours bring them into frequent contact with these disease vectors outside of their homes. A systematic review was conducted to ascertain at-risk occupations and situations that put individuals at increased risk of exposure to these disease vectors in endemic regions and identify the most suitable interventions for each exposure. The review was conducted in accordance with PRISMA guidelines on articles published between 1945 and October 2021, searched in 16 online databases. The primary outcome was incidence or prevalence of dengue, leishmaniasis or malaria. The review excluded ecological and qualitative studies, abstracts only, letters, commentaries, reviews, and studies of laboratory-acquired infections. Studies were appraised, data extracted, and a descriptive analysis conducted. Bite interventions for each risk group were assessed. A total of 1170 articles were screened and 99 included. Malaria, leishmaniasis and dengue were presented in 47, 41 and 24 articles, respectively; some articles presented multiple conditions. The most represented populations were soldiers, 38% (43 of 112 studies); refugees and travellers, 15% (17) each; migrant workers, 12.5% (14); miners, 9% (10); farmers, 5% (6); rubber tappers and missionaries, 1.8% (2) each; and forest workers, 0.9% (1). Risk of exposure was categorised into round-the-clock or specific times of day/night dependent on occupation. Exposure to these vectors presents a critical and understudied concern for outdoor workers and mobile populations. When devising interventions to provide round-the-clock vector bite protection, two populations are considered. First, mobile populations, characterized by their high mobility, may find potential benefits in insecticide-treated clothing, though more research and optimization are essential. Treated clothing offers personal vector protection and holds promise for economically disadvantaged individuals, especially when enabling them to self-treat their clothing to repel vectors. Secondly, semi-permanent and permanent settlement populations can receive a combination of interventions that offer both personal and community protection, including spatial repellents, suitable for extended stays. Existing research is heavily biased towards tourism and the military, diverting attention and resources from vulnerable populations where these interventions are most required like refugee populations as well as those residing in sub-Saharan Africa.

4.
PLoS Negl Trop Dis ; 18(4): e0011451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630832

RESUMEN

Systems for disease vector control should be effective, efficient, and flexible to be able to tackle contemporary challenges and threats in the control and elimination of vector-borne diseases. As a priority activity towards the strengthening of vector control systems, it has been advocated that countries conduct a vector-control needs assessment. A review was carried out of the perceived needs for disease vector control programs among eleven countries and subnational states in South Asia and the Middle East. In each country or state, independent teams conducted vector control needs assessment with engagement of stakeholders. Important weaknesses were described for malaria, dengue and leishmaniases regarding vector surveillance, insecticide susceptibility testing, monitoring and evaluation of operations, entomological capacity and laboratory infrastructure. In addition, community mobilization and intersectoral collaboration showed important gaps. Countries and states expressed concern about insecticide resistance that could reduce the continued effectiveness of interventions, which demands improved monitoring. Moreover, attainment of disease elimination necessitates enhanced vector surveillance. Vector control needs assessment provided a useful planning tool for systematic strengthening of vector control systems. A limitation in conducting the vector control needs assessment was that it is time- and resource-intensive. To increase the feasibility and utility of national assessments, an abridged version of the guidance should focus on operationally relevant topics of the assessment. Similar reviews are needed in other regions with different contextual conditions.


Asunto(s)
Enfermedades Transmitidas por Vectores , Animales , Humanos , Sur de Asia/epidemiología , Dengue/prevención & control , Dengue/epidemiología , Dengue/transmisión , Vectores de Enfermedades , Insecticidas , Malaria/prevención & control , Malaria/epidemiología , Medio Oriente/epidemiología , Evaluación de Necesidades , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión
5.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
6.
PLoS Negl Trop Dis ; 16(7): e0010304, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35834563

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) is targeted for elimination as a public health problem in Nepal by 2023. For nearly three decades, the core vector control intervention in Nepal has been indoor residual spraying (IRS) with pyrethroids. Considering the long-term use of pyrethroids and the possible development of resistance in the vector Phlebotomus argentipes sand flies, we monitored the susceptibility status of their field populations to the insecticides of different classes, in villages with and without IRS activities in recent years. METHODOLOGY/PRINCIPAL FINDINGS: Sand flies were collected from villages with and without IRS in five VL endemic districts from August 2019 to November 2020. The WHO susceptibility test procedure was adopted using filter papers impregnated at the discriminating concentrations of insecticides of the following classes: pyrethroids (alpha-cypermethrin 0.05%, deltamethrin 0.05%, and lambda-cyhalothrin 0.05%), carbamates (bendiocarb 0.1%) and organophosphates (malathion 5%). Pyrethroid resistance intensity bioassays with papers impregnated with 5× of the discriminating concentrations, piperonyl butoxide (PBO) synergist-pyrethroid bioassays, and DDT cross-resistance bioassays were also performed. In the IRS villages, the vector sand flies were resistant (mortality rate <90%) to alpha-cypermethrin and possibly resistant (mortality rate 90-97%) to deltamethrin and lambda-cyhalothrin, while susceptibility to these insecticides was variable in the non-IRS villages. The vector was fully susceptible to bendiocarb and malathion in all villages. A delayed knockdown time (KDT50) with pyrethroids was observed in all villages. The pyrethroid resistance intensity was low, and the susceptibility improved at 5× of the discriminating concentrations. Enhanced pyrethroid susceptibility after pre-exposure to PBO and the DDT-pyrethroid cross-resistance were evident. CONCLUSIONS/SIGNIFICANCE: Our investigation showed that P. argentipes sand flies have emerged with pyrethroid resistance, suggesting the need to switch to alternative classes of insecticides such as organophosphates for IRS. We strongly recommend the regular and systematic monitoring of insecticide resistance in sand flies to optimize the efficiency of vector control interventions to sustain VL elimination efforts in Nepal.


Asunto(s)
Insecticidas , Leishmaniasis Visceral , Phlebotomus , Psychodidae , Piretrinas , Animales , DDT , Resistencia a los Insecticidas , Insecticidas/farmacología , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/prevención & control , Malatión , Nepal/epidemiología , Piretrinas/farmacología
7.
Sci Rep ; 11(1): 23867, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903838

RESUMEN

Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.


Asunto(s)
Utilización de Equipos y Suministros/tendencias , Control de Insectos/tendencias , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/clasificación , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Humanos , Control de Insectos/métodos , Insecticidas/provisión & distribución , Mosquiteros/estadística & datos numéricos , Enfermedades Transmitidas por Vectores/epidemiología
8.
Infect Dis Poverty ; 10(1): 135, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930459

RESUMEN

BACKGROUND: Long-lasting insecticide nets (LLINs) are a core malaria intervention. LLINs should retain efficacy against mosquito vectors for a minimum of three years. Efficacy and durability of Olyset® Plus, a permethrin and piperonyl butoxide (PBO) treated LLIN, was evaluated versus permethrin treated Olyset® Net. In the absence of WHO guidelines of how to evaluate PBO nets, and considering the manufacturer's product claim, Olyset® Plus was evaluated as a pyrethroid LLIN. METHODS: This was a household randomized controlled trial in a malaria endemic rice cultivation zone of Kirinyaga County, Kenya between 2014 and 2017. Cone bioassays and tunnel tests were done against Anopheles gambiae Kisumu. The chemical content, fabric integrity and LLIN survivorship were monitored. Comparisons between nets were tested for significance using the Chi-square test. Exact binomial distribution with 95% confidence intervals (95% CI) was used for percentages. The WHO efficacy criteria used were ≥ 95% knockdown and/or ≥ 80% mortality rate in cone bioassays and ≥ 80% mortality and/or ≥ 90% blood-feeding inhibition in tunnel tests. RESULTS: At 36 months, Olyset® Plus lost 52% permethrin and 87% PBO content; Olyset® Net lost 24% permethrin. Over 80% of Olyset® Plus and Olyset® Net passed the WHO efficacy criteria for LLINs up to 18 and 12 months, respectively. At month 36, 91.2% Olyset® Plus and 86.4% Olyset® Net survived, while 72% and 63% developed at least one hole. The proportionate Hole Index (pHI) values representing nets in good, serviceable and torn condition were 49.6%, 27.1% and 23.2%, respectively for Olyset® Plus, and 44.9%, 32.8% and 22.2%, respectively for Olyset® Net but were not significantly different. CONCLUSIONS: Olyset® Plus retained efficacy above or close to the WHO efficacy criteria for about 2 years than Olyset® Net (1-1.5 years). Both nets did not meet the 3-year WHO efficacy criteria, and showed little attrition, comparable physical durability and survivorship, with 50% of Olyset® Plus having good and serviceable condition after 3 years. Better community education on appropriate use and upkeep of LLINs is essential to ensure effectiveness of LLIN based malaria interventions.


Asunto(s)
Insecticidas , Permetrina , Kenia , Butóxido de Piperonilo/farmacología
9.
Emerg Themes Epidemiol ; 18(1): 16, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819085

RESUMEN

BACKGROUND: Through a nationally representative household survey in Afghanistan, we conducted an operational study in two relatively secure provinces comparing effectiveness of computer-aided personal interviewing (CAPI) with paper-and-pencil interviewing (PAPI). METHODS: In Panjshir and Parwan provinces, household survey data were collected using paper questionnaires in 15 clusters, and OpenDataKit (ODK) software on electronic tablets in 15 other clusters. Added value was evaluated from three perspectives: efficient implementation, data quality, and acceptability. Efficiency was measured through financial expenditures and time stamped data. Data quality was measured by examining completeness. Acceptability was studied through focus group discussions with survey staff. RESULTS: Survey costs were 68% more expensive in CAPI clusters compared to PAPI clusters, due primarily to the upfront one-time investment for survey programming. Enumerators spent significantly less time administering surveys in CAPI cluster households (248 min survey time) compared to PAPI (289 min), for an average savings of 41 min per household (95% CI 25-55). CAPI offered a savings of 87 days for data management over PAPI. Among 49 tracer variables (meaning responses were required from all respondents), small differences were observed between PAPI and CAPI. 2.2% of the cleaned dataset's tracer data points were missing in CAPI surveys (1216/ 56,073 data points), compared to 3.2% in PAPI surveys (1953/ 60,675 data points). In pre-cleaned datasets, 3.9% of tracer data points were missing in CAPI surveys (2151/ 55,092 data points) compared to 3.2% in PAPI surveys (1924/ 60,113 data points). Enumerators from Panjsher and Parwan preferred CAPI over PAPI due to time savings, user-friendliness, improved data security, and less conspicuity when traveling; however approximately half of enumerators trained from all 34 provinces reported feeling unsafe due to Taliban presence. Community and household respondent skepticism could be resolved by enumerator reassurance. Enumerators shared that in the future, they prefer collecting data using CAPI when possible. CONCLUSIONS: CAPI offers clear gains in efficiency over PAPI for data collection and management time, although costs are relatively comparable even without the programming investment. However, serious field staff concerns around Taliban threats and general insecurity mean that CAPI should only be conducted in relatively secure areas.

10.
BMC Infect Dis ; 21(1): 468, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022823

RESUMEN

BACKGROUND: Vector control plays a critical role in the prevention, control and elimination of vector-borne diseases, and interventions of vector control continue to depend largely on the action of chemical insecticides. A global survey was conducted on the management practices of vector control insecticides at country level to identify gaps to inform future strategies on pesticide management, seeking to improve efficacy of interventions and reduce the side-effects of chemicals used on health and the environment. METHODS: A survey by questionnaire on the management practices of vector control insecticides was disseminated among all WHO Member States. Data were analysed using descriptive statistics in MS Excel. RESULTS: Responses were received from 94 countries, or a 48% response rate. Capacity for insecticide resistance monitoring was established in 68-80% of the countries in most regions, often with external support; however, this capacity was largely lacking from the European & Others Region (i.e. Western & Eastern Europe, North America, Australia and New Zealand). Procurement of vector control insecticides was in 50-75% of countries taking place by agencies other than the central-level procuring agency, over which the central authorities lacked control, for example, to select the product or assure its quality, highlighting the importance of post-market monitoring. Moreover, some countries experienced problems with estimating the correct amounts for procurement, especially for emergency purposes. Large fractions (29-78%) of countries across regions showed shortcomings in worker safety, pesticide storage practices and pesticide waste disposal. Shortcomings were most pronounced in countries of the European & Others Region, which has long been relatively free from mosquito-borne diseases but has recently faced challenges of re-emerging vector-borne diseases. CONCLUSIONS: Critical shortcomings in the management of vector control insecticides are common in countries across regions, with risks of adverse pesticide effects on health and the environment. Advocacy and resource mobilization are needed at regional and country levels to address these challenges.


Asunto(s)
Vectores de Enfermedades , Salud Global , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Asia/epidemiología , Monitoreo Epidemiológico , Europa (Continente)/epidemiología , Humanos , América del Norte/epidemiología , América del Sur/epidemiología , Encuestas y Cuestionarios
11.
PLoS Negl Trop Dis ; 15(4): e0009358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33930033

RESUMEN

Interventions to control the vectors of human diseases, notably malaria, leishmaniasis and dengue, have relied mainly on the action of chemical insecticides. However, concerns have been raised regarding the management of insecticides in vector-borne disease-endemic countries. Our study aimed to analyze how vector control insecticides are managed in selected countries to extract lessons learned. A qualitative analysis of the situation of vector control insecticides management was conducted in six countries. Multi-stakeholder meetings and key informer interviews were conducted on aspects covering the pesticide lifecycle. Findings were compared and synthesized to extract lessons learned. Centrally executed guidelines and standards on the management of insecticides offered direction and control in most malaria programs, but were largely lacking from decentralized dengue programs, where practices of procurement, application, safety, storage, and disposal were variable between districts. Decentralized programs were better at facilitating participation of stakeholders and local communities and securing financing from local budgets. However, little coordination existed between malaria, visceral leishmaniasis and dengue programs within countries. Entomological capacity was concentrated in malaria programs at central level, while dengue and visceral leishmaniasis programs were missing out on expertise. Monitoring systems for insecticide resistance in malaria vectors were rarely used for dengue or visceral leishmaniasis vectors. Strategies for insecticide resistance management, where present, did not extend across programs or sectors in most countries. Dengue programs in most countries continued to rely on space spraying which, considering the realities on the ground, call for revision of international guidelines. Vector control programs in the selected countries were confronted with critical shortcomings in the procurement, application, safety measures, storage, and disposal of vector control insecticides, with implications for the efficiency, effectiveness, and safety of vector control. Further international support is needed to assist countries in situation analysis, action planning and development of national guidelines on vector control insecticide management.


Asunto(s)
Vectores de Enfermedades , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Asia/epidemiología , Monitoreo Epidemiológico , Salud Global , Humanos , Medio Oriente/epidemiología
12.
Trop Med Int Health ; 26(7): 823-828, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33733549

RESUMEN

OBJECTIVES: Indoor residual spraying (IRS) with insecticides is the main vector control intervention for the elimination of visceral leishmaniasis in India. After a change in IRS policy in 2015 due to widespread resistance of Phlebotomus argentipes to DDT, IRS with DDT was replaced with alpha-cypermethrin IRS in 2016. The objective of the present study was to evaluate the susceptibility of P. argentipes to DDT and its alternatives, namely malathion and pirimiphos-methyl (organophosphates); alpha-cypermethrin, deltamethrin, lambda-cyhalothrin and permethrin (pyrethroids), and bendiocarb and propoxur (carbamates), in support of visceral leishmaniasis elimination in India. METHODS: Phlebotomus argentipes sandflies were collected from the visceral-leishmaniasis endemic states of Bihar, Jharkhand and West Bengal. In the WHO tube tests, the phenotypic susceptibility of F1, 2-day old, non-blood fed females were determined against filter papers impregnated with DDT 4%, malathion 5%, pirimiphos-methyl 0.25%, alpha-cypermethrin 0.05%, deltamethrin 0.05%, lambda-cyhalothrin 0.05%, permethrin 0.75%, bendiocarb 0.1% and propoxur 0.1%, which were sourced from Universiti Sains Malaysia. The knockdown of sandflies after 1-h exposure and mortality at 24 h after the 1-h exposure period were scored. RESULTS: Mean mortality of P. argentipes 24 h after exposure in tube tests was 22.6% for DDT and ≥ 98% for other insecticide-impregnated papers tested. CONCLUSION: Phlebotomus argentipes continues to be highly resistant to DDT with no reversal of resistance after DDT's withdrawal from IRS. P. argentipes was fully susceptible to pyrethroid, organophosphate and carbamate insecticides tested. Regular monitoring is warranted for insecticide resistance management in sandfly vectors.


Asunto(s)
Insectos Vectores/efectos de los fármacos , Insecticidas/farmacología , Leishmaniasis Visceral/prevención & control , Phlebotomus/efectos de los fármacos , Psychodidae/efectos de los fármacos , Animales , Humanos , India , Resistencia a los Insecticidas/efectos de los fármacos
13.
Cureus ; 13(2): e13521, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33786228

RESUMEN

Background and aims Acute upper gastrointestinal (UGI) bleeding is one of the serious and potentially life-threatening medical emergencies, causing significant mortality and morbidity. This study aimed to evaluate the clinico-endoscopic profile and outcome among patients aged <60 years who presented for UGI bleeding compared to those aged ≥60 years. Methods This prospective observational study was conducted among 194 patients who presented with symptoms or signs of UGI bleed. All patients were divided into two groups, group A (age <60 years), and group B (age ≥60 years). UGI endoscopy was performed using Olympus N19 Endoscope. Rockall scoring (RS) system and Glasgow Blatchford score (GBS) were used to predict the prognosis and re-bleeding. Results Of the total, group A included 150 (77.31%) patients and group B 44 (22.69%) patients. The most common presentation was hematemesis and melena in both groups, whilst isolated hematochezia was more common in group A (6.67%, vs. 2.27%, p>0.05). The main cause of bleeding was a variceal bleed in both groups, but it was significantly higher in group A patients (p<0.05). Elderly patients had a significantly higher number of peptic ulcer and malignancy-related bleed (p<0.05). Group A patients had a significantly higher proportion of patients with tachycardia (45.33%, vs. 27.27%, p<0.05), shock (43.33% vs. 13.63%, p<0.05), pallor (76.66% vs. 56.81%, p<0.05), and blood transfusion requirement (64% vs. 45.45%, p<0.05) as compared to group B. Thirty days re-bleeding and mortality rate were similar in both the groups. RS in both groups was 5.02±2.12 vs. 5.98±1.91, p>0.05. GBS was 11.65±4.61 vs. 10.68±4.65, p>0.05. Mortality was significantly higher in patients with RS ≥6 and GBS ≥10. Conclusion This study concluded variceal bleeding as a predominant cause of UGI bleed in both age groups, and it was significantly higher in younger. Interestingly, younger patients were more hemodynamically unstable, probably due to the presence of more severe anemia, shock, and hematochezia. The presence of multiple co-morbidities in both the group kept the 30 days mortality and re-bleed rates similar.

14.
Trop Med Int Health ; 26(4): 469-477, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423364

RESUMEN

OBJECTIVES: To evaluate the entomological efficacy and the residual activity of indoor residual spraying with Fludora® Fusion 562.5 WP-SB, a combination formulation containing clothianidin, a neonicotinoid and deltamethrin, a pyrethroid, against the main rural malaria vector, Anopheles culicifacies s.l., in India in a small-scale trial. METHODS: In three study villages, suitable households were randomly allocated to five treatments: Fludora® Fusion 562.5 WP-SB (target dose 225 mg active ingredient AI/m2 ); clothianidin 70 WG (target dose 200 mg AI/m2 ); K-Othrine 250 WG (deltamethrin, target dose 25 mg AI/m2 ); Ficam VC 80 WP-SB (bendiocarb, target dose 400 mg AI/m2 ) and unsprayed control. Insecticides were sprayed by hand compression sprayers with control flow valves and 8002E nozzles. Post-spray cone bioassays were done on insecticide-treated walls using a colonised, deltamethrin-resistant strain of An. culicifacies. Mosquitoes were collected from treated rooms by different methods. The insecticide content on filter papers collected from the sprayed walls was determined by chemical assay to assess the spray quality. RESULTS: The ratios of applied to target doses of insecticides were within 0.84 to 1.4, showing a good spray quality. The cone bioassays revealed residual action lasting 7 months for all insecticides without significant differences in mortality between different surfaces treated nor between the four treatment arms (P > 0.05). Considering all entomological parameters such as indoor resting density, excito-repellency, blood-feeding inhibition and delayed mortality, the overall efficacy of Fludora® Fusion WG-SB was equal or better compared with other insecticides. CONCLUSIONS: Fludora® Fusion showed overall equal or better efficacy than deltamethrin and bendiocarb alone against a pyrethroid-resistant malaria vector population and can be considered as an alternative product for management of pyrethroid resistance in malaria vectors.


Asunto(s)
Anopheles/efectos de los fármacos , Culicidae/efectos de los fármacos , Composición Familiar , Insecticidas/farmacología , Malaria , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Animales , Bioensayo , Guanidinas/farmacología , Humanos , Resistencia a los Insecticidas , Malaria/prevención & control , Malaria/transmisión , Neonicotinoides/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Tiazoles/farmacología
15.
Sci. rep. (Nat. Publ. Group) ; 11(1): [12], 2021. tab, ilus
Artículo en Inglés | LILACS, BVSDIP | ID: biblio-1562030

RESUMEN

Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.


Asunto(s)
Piretrinas , Resistencia a los Insecticidas , Enfermedad de Chagas , Insecticidas
16.
Sci Total Environ ; 742: 140598, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32629272

RESUMEN

Pesticide lifecycle management encompasses a range of elements from legislation, regulation, manufacturing, application, risk reduction, monitoring, and enforcement to disposal of pesticide waste. A survey was conducted in 2017-2018 to describe the contemporary global status of pesticide lifecycle management, to identify where the gaps are found. A three-tiered questionnaire was distributed to government entities in 194 countries. The response rate was 29%, 27% and 48% to the first, second and third part of the questionnaire, respectively. The results showed gaps for most of the selected indicators of pesticide management, suggesting that pesticide efficacy and safety to human health and the environment are likely being compromised at various stages of the pesticide lifecycle, and at varying degrees across the globe. Low-income countries generally had the highest incidence of gaps. Particular shortcomings were deficiencies in pesticide legislation, inadequate capacity for pesticide registration, protection against occupational exposure to pesticides, consumer protection against residues in food, and environmental protection against pesticide contamination. Policy support for, and implementation of, pesticide use-reduction strategies such as integrated pest management and integrated vector management has been inadequate across regions. Priority actions for structural improvement in pesticide lifecycle management are proposed, including pesticide use-reduction strategies, targeted interventions, and resource mobilization.

18.
Travel Med Infect Dis ; 33: 101570, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32007622

RESUMEN

BACKGROUND: Air travel contributes to the global spread of vectors and vector-borne infections. Although WHO provides guidance on methods for disinsection of aircraft, there is currently no harmonized or standardized decision-making process to decide when disinsection of an aircraft should be conducted. It is however compulsory for flights arriving in certain countries. Concerns have been expressed about the usefulness of disinsection for preventing the international spread of vectors and vector-borne diseases via air travel and possible toxicity for passengers and flight crew. METHODS: We performed a systematic literature review using the databases PubMed, Embase, Medline, Scopus and CINAHL to evaluate all research findings about the applicability and safety of chemical-based, aircraft disinsection. Official reports from the WHO were also screened. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and meta-analysis (PRISMA) statement. The literature search strategy included "disinsection, airplane/plane/aviation/aircraft" and several other search items including d-phenothrin, permethrin, insecticide. Papers in English, French and German were reviewed. Reports of adverse events attributed to the disinsection of aircraft were also searched. AMP and PS screened all papers of relevance and agreed on a final selection. RESULTS: Our search resulted in 440 papers of possible relevance. After screening, we included a total of 25 papers in this systematic review. Ten papers reported possible human toxicity and 17 papers addressed the applicability of disinsection and 2 papers addressed both topics. Chemical disinsection at recommended insecticide concentrations was found to be highly effective against a broad range of arthropods. Three papers reported passenger or crew illness possibly associated with insecticide spraying in passenger cabins - one describing a single passenger, the other two papers describing occupational illness of 12 and 33 aircrew members respectively, possibly due to aircraft disinsection. Another paper evaluating exposure of flight attendants to permethrin found higher levels of urinary metabolites in those working in planes that had recently been sprayed but this could not be linked to adverse health outcomes. CONCLUSION: Our analysis confirmed that disease vectors are carried on international flights and can pose a threat particularly to island populations and certain airport hub areas. Disinsection with permethrin or d-phenothrin was shown to be highly effective against vectors. Despite several hundred million passenger and crew exposures to chemical disinsection, very few proven cases of toxicity have been reported. There is limited evidence linking exposure to insecticide spraying with negative health impact.


Asunto(s)
Aeronaves , Desinfección/métodos , Insecticidas/uso terapéutico , Piretrinas/uso terapéutico , Enfermedades Transmitidas por Vectores/prevención & control , Contaminación del Aire Interior/efectos adversos , Animales , Culicidae , Humanos , Insecticidas/efectos adversos , Insecticidas/orina , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Piretrinas/efectos adversos
19.
PLoS One ; 14(12): e0226191, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31869350

RESUMEN

BACKGROUND: In view of widespread pyrethroid resistance in malaria vectors in Africa, two long-lasting insecticidal nets (LLINs) incorporated with a synergist, piperonyl butoxide (PBO), DawaPlus 3.0 (deltamethrin + PBO in the roof panel; deltamethrin alone in the side panels) and DawaPlus 4.0 (deltamethrin + PBO in all panels), were evaluated in an experimental hut trial in a rice growing irrigated area in Burkina Faso. Efficacy of nets was tested against free-flying malaria vector, Anopheles gambiae s.l., with high pyrethroid resistance involving L1014F kdr and CYP6P3P450 resistance mechanisms. METHODOLOGY: The efficacy of unwashed and 20-times washed DawaPlus 3.0 (polyethylene roof panel with 120 mg/m2 deltamethrin and 440 mg/m2 PBO; polyester side panels with deltamethrin 100 mg/m2) and DawaPlus 4.0 (same composition as roof of DawaPlus 3.0) was evaluated against DawaPlus 2.0 (80 mg/m2 deltamethrin; positive control). Volunteer sleepers and treatments were rotated in huts using a Latin square design on 63 consecutive nights during August-October 2016. Mortality, human blood-feeding inhibition, deterrence and exit rates of An. gambiae s.l. were monitored. PRINCIPAL FINDINGS: Significantly higher rates of mortality and blood-feeding inhibition were observed with unwashed DawaPlus 4.0 (36%; 47.5%) than unwashed DawaPlus 3.0 (11.8%; 33.3%), DawaPlus 2.0 (4.3%; 6.4%) or untreated net (P < 0.05). Washing reduced personal protective efficacy yet PBO-LLINs were more protective and both met the WHO criteria. CONCLUSIONS: The PBO-containing DawaPlus 4.0 significantly protected against An. gambiae s.l. in the study area. Unwashed DawaPlus 3.0 gave low to moderate protection against the positive control. PBO inhibits oxidase action; hence in areas with active malaria transmission having oxidase mechanisms, PBO nets could confer additional personal protection.


Asunto(s)
Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Control de Mosquitos/métodos , Nitrilos/farmacología , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Agricultura , Animales , Anopheles/fisiología , Burkina Faso , Diseño de Equipo , Vuelo Animal/efectos de los fármacos , Gossypium , Humanos , Insecticidas/farmacología , Malaria/prevención & control , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Oryza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...