Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1374301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835765

RESUMEN

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Asunto(s)
VIH-1 , Ratones Transgénicos , Monoacilglicerol Lipasas , Enfermedades Neuroinflamatorias , Animales , Ratones , VIH-1/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Femenino , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Microglía/metabolismo , Complejo SIDA Demencia/tratamiento farmacológico
2.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945996

RESUMEN

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH , VIH-1 , Enfermedades Neuroinflamatorias , Neuronas , Animales , Ratones , Infecciones por VIH/virología , Infecciones por VIH/patología , Infecciones por VIH/complicaciones , Humanos , Neuronas/virología , Neuronas/patología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , Encéfalo/patología , Encéfalo/virología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Microfilamentos/metabolismo
3.
PLoS One ; 19(6): e0305868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913661

RESUMEN

The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.


Asunto(s)
Endocannabinoides , Ratones Transgénicos , Receptor Cannabinoide CB1 , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Animales , Femenino , Masculino , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Ratones , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Modelos Animales de Enfermedad
4.
Front Neurosci ; 18: 1358555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505774

RESUMEN

Background: Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods: Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results: Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion: Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38394322

RESUMEN

Background: Evidence suggests that monoacylglycerol lipase (MAGL) inhibitors can potentially treat HIV symptoms by increasing the concentration of 2-arachidonoylglycerol (2-AG). We examined a selective MAGL inhibitor ABX1431 in the context of neuroHIV. Methods: To assess the effects of ABX1431, we conducted in vitro and in vivo studies. In vitro calcium imaging on frontal cortex neuronal cultures was performed to evaluate the role of ABX1431 (10, 30, 100 nM) on transactivator of transcription (Tat)-induced neuronal hyperexcitability. Following in vitro experiments, in vivo experiments were performed using Tat transgenic male mice. Mice were treated with 4 mg/kg ABX1431 and assessed for antinociception using tail-flick and hot plate assays followed by locomotor activity. After the behavioral experiments, their brains were harvested to quantify endocannabinoids (eCB) and related lipids through mass spectrometry, and cannabinoid type-1 and -2 receptors (CB1R and CB2R) were quantified through western blot. Results: In vitro studies revealed that adding Tat directly to the neuronal cultures significantly increased intracellular calcium concentration, which ABX1431 completely reversed at all concentrations. Preincubating the cultures with CB1R and CB2R antagonists showed that ABX1431 exhibited its effects partially through CB1R. In vivo studies demonstrated that acute ABX1431 increased overall total distance traveled and speed of mice regardless of their genotype. Mass spectrometry and western blot analyses revealed differential effects on the eCB system based on Tat expression. The 2-AG levels were significantly upregulated following ABX1431 treatment in the striatum and spinal cord. Arachidonic acid (AA) was also upregulated in the striatum of vehicle-treated Tat(+) mice. No changes were noted in CB1R expression levels; however, CB2R levels were increased in ABX1431-treated Tat(-) mice only. Conclusion: Findings indicate that ABX1431 has potential neuroprotective effects in vitro partially mediated through CB1R. Acute treatment of ABX1431 in vivo shows antinociceptive effects, and seems to alter locomotor activity, with upregulating 2-AG levels in the striatum and spinal cord.

6.
Brain Res ; 1822: 148638, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858856

RESUMEN

Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Ratones , Animales , Masculino , Femenino , Endocannabinoides/metabolismo , Dronabinol/farmacología , VIH-1/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Ratones Transgénicos , Analgésicos/farmacología
7.
Cells ; 11(5)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269478

RESUMEN

(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.


Asunto(s)
Cannabinoides , Infecciones por VIH , Amidohidrolasas , Animales , Cannabinoides/farmacología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas , Piridinas , Receptores de Cannabinoides , Transmisión Sináptica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
8.
Front Neurol ; 12: 651272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484091

RESUMEN

While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(-) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(-) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.

9.
Exp Neurol ; 341: 113699, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33736974

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7-11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845's effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Enfermedades Neurodegenerativas/prevención & control , Neuroprotección/fisiología , Fármacos Neuroprotectores/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/toxicidad , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Piperidinas/farmacología , Piridinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo
10.
Neurosci Lett ; 750: 135717, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33587986

RESUMEN

In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.


Asunto(s)
Complejo SIDA Demencia/tratamiento farmacológico , Cannabinoides/uso terapéutico , Complejo SIDA Demencia/metabolismo , Animales , Cannabinoides/metabolismo , Humanos , Receptor Cannabinoide CB2/metabolismo
11.
J Neuroinflammation ; 17(1): 345, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208151

RESUMEN

BACKGROUND: Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS: Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry.  RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION: Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.


Asunto(s)
Aminoácidos/metabolismo , Endocannabinoides/metabolismo , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos/fisiología , Morfina/administración & dosificación , Neuroprotección/fisiología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/biosíntesis , Analgésicos Opioides/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
12.
ACS Chem Neurosci ; 10(9): 4043-4050, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31369229

RESUMEN

Synthetic cathinones are, primarily, stimulant drugs of abuse that act at monoamine transporters (e.g., the dopamine transporter or DAT) as releasing agents or as reuptake inhibitors. In the past few years, the emergence of >150 new synthetic cathinones has attracted considerable attention from medical and law enforcement communities. threo-Methylphenidate (tMP), used clinically for the treatment of ADHD and narcolepsy, is also a DAT reuptake inhibitor. tMP is somewhat structurally similar to abused cathinone stimulants, and the structure-activity relationships (SAR) of tMP have been well-defined. Hence, available tMP literature might assist in understanding the SAR of synthetic cathinones, about which less is known. In the present study, we synthesized and examined eight 2-benzoylpiperidine analogues (4, 6-12) to determine if tMP SAR might be applicable to cathinone SAR. The benzoylpiperidine analogues were evaluated in a competition assay using live-cell imaging against APP+ in HEK293 cells stably expressing hDAT and in cells coexpressing DAT and voltage-gated Ca2+ channels. All compounds were found to be DAT reuptake inhibitors, and a significant correlation was obtained between the potency of the benzoylpiperidines and tMP binding data (r = 0.91), suggesting that the SAR of tMP analogues might be directly applicable to certain synthetic cathinones as DAT reuptake inhibitors.


Asunto(s)
Alcaloides/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Metilfenidato/farmacología , Alcaloides/química , Estimulantes del Sistema Nervioso Central/química , Estimulantes del Sistema Nervioso Central/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Metilfenidato/química , Pirrolidinas/farmacología , Relación Estructura-Actividad , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Trastornos Relacionados con Sustancias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...