Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Breed Sci ; 69(1): 11-18, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31086479

RESUMEN

Bacterial spot (caused by Xanthomonas arboricola pv. pruni) is a serious disease and difficult to control in peach cultivation, and inheritance manner of susceptibility is unclear. Five hundred and fourteen offspring and their parents from 27 peach full-sib families were evaluated for susceptibility to bacterial spot by evaluating lesion length value (LLV) after artificial inoculation to shoots from trees growing in the field. Brazilian cultivars including 'Chimarrita' and selections derived from them had notably lower LLVs ranging from 0.302 to 0.490 than those from Japanese cultivars/selections ranging from 0.514 to 1.295. Family means in offspring crossed between Brazilian cultivars/selections (low LLVs) and other cultivars/selections (high LLVs) showed rather low LLVs, whose values were close to Brazilian cultivar/selection parents. These results suggested that the susceptibility was controlled by single major gene and that the Brazilian and Japanese cultivar/selection parents showed dominant and recessive homozygotes, respectively. In contrast, the LLVs of family means were very high ranging from 0.719 to 1.194 in offspring population derived from crosses among Japanese cultivars. Repeated backcrosses of Brazilian cultivars/selections with Japanese cultivars/selections having high fruit quality are proposed as an effective method for developing new cultivars combining bacterial spot resistance and fruit quality in Japan.

2.
Plant J ; 96(4): 815-827, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118567

RESUMEN

Melting-flesh peaches produce large amounts of ethylene, resulting in rapid fruit softening at the late-ripening stage. In contrast, stony hard peaches do not soften and produce little ethylene. The indole-3-acetic acid (IAA) level in stony hard peaches is low at the late-ripening stage, resulting in low ethylene production and inhibition of fruit softening. To elucidate the mechanism of low IAA concentration in stony hard peaches, endogenous levels of IAA and IAA intermediates or metabolites were analysed by ultra-performance liquid chromatography-tandem mass spectrometry. Although the IAA level was low, the indole-3-pyruvic acid (IPyA) level was high in stony hard peaches at the ripening stage. These results indicate that YUCCA activity is reduced in ripening stony hard peaches. The expression of one of the YUCCA isogenes in peach, PpYUC11, was suppressed in ripening stony hard peaches. Furthermore, an insertion of a transposon-like sequence was found upstream of the PpYUC11 gene in the 5'-flanking region. Analyses of the segregation ratio of the stony hard phenotype and genotype in F1 progenies indicated that the transposon-inserted allele of PpYUC11, hd-t, correlated with the stony hard phenotype. On the basis of the above findings, we propose that the IPyA pathway (YUCCA pathway) is the main auxin biosynthetic pathway in ripening peaches of 'Akatsuki' and 'Manami' cultivars. Because IAA is not supplied from storage forms, IAAde novo synthesis via the IPyA pathway (YUCCA pathway) in mesocarp tissues is responsible for auxin generation to support fruit softening, and its disruption can lead to the stony hard phenotype.


Asunto(s)
Región de Flanqueo 5'/genética , Etilenos/metabolismo , Frutas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Elementos Transponibles de ADN , Etilenos/farmacología , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Ácidos Indolacéticos/farmacología , Indoles/metabolismo , Mutagénesis Insercional , Oxigenasas/genética , Oxigenasas/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Recombinantes , Análisis de Secuencia de ARN
3.
DNA Res ; 23(3): 271-82, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27085183

RESUMEN

Domestication and cultivar differentiation are requisite processes for establishing cultivated crops. These processes inherently involve substantial changes in population structure, including those from artificial selection of key genes. In this study, accessions of peach (Prunus persica) and its wild relatives were analysed genome-wide to identify changes in genetic structures and gene selections associated with their differentiation. Analysis of genome-wide informative single-nucleotide polymorphism loci revealed distinct changes in genetic structures and delineations among domesticated peach and its wild relatives and among peach landraces and modern fruit (F) and modern ornamental (O-A) cultivars. Indications of distinct changes in linkage disequilibrium extension/decay and of strong population bottlenecks or inbreeding were identified. Site frequency spectrum- and extended haplotype homozygosity-based evaluation of genome-wide genetic diversities supported selective sweeps distinguishing the domesticated peach from its wild relatives and each F/O-A cluster from the landrace clusters. The regions with strong selective sweeps harboured promising candidates for genes subjected to selection. Further sequence-based evaluation further defined the candidates and revealed their characteristics. All results suggest opportunities for identifying critical genes associated with each differentiation by analysing genome-wide genetic diversity in currently established populations. This approach obviates the special development of genetic populations, which is particularly difficult for long-lived tree crops.


Asunto(s)
Genoma de Planta , Fitomejoramiento , Polimorfismo Genético , Prunus persica/genética , Selección Genética
4.
BMC Plant Biol ; 15: 280, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26582106

RESUMEN

BACKGROUND: Red coloration of fruit skin is one of the most important traits in peach (Prunus persica), and it is mainly due to the accumulation of anthocyanins. Three MYB10 genes, PpMYB10.1, PpMYB10.2, and PpMYB10.3, have been reported as important regulators of red coloration and anthocyanin biosynthesis in peach fruit. In this study, contribution of PpMYB10.1/2/3 to anthocyanin accumulation in the fruit skin was investigated in the Japanese peach cultivars, white-skinned 'Mochizuki' and red-skinned 'Akatsuki'. We then investigated the relationships between allelic type of PpMYB10.1 and skin color phenotype in 23 Japanese peach cultivars for future establishment of DNA-marker. RESULTS: During the fruit development of 'Mochizuki' and 'Akatsuki', anthocyanin accumulation was observed only in the skin of red 'Akatsuki' fruit in the late ripening stages concomitant with high mRNA levels of the last step gene leading to anthocyanin accumulation, UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT). This was also correlated with the expression level of PpMYB10.1. Unlike PpMYB10.1, expression levels of PpMYB10.2/3 were low in the skin of both 'Mochizuki' and 'Akatsuki' throughout fruit development. Moreover, only PpMYB10.1 revealed expression levels associated with total anthocyanin accumulation in the leaves and flowers of 'Mochizuki' and 'Akatsuki'. Introduction of PpMYB10.1 into tobacco increased the expression of tobacco UFGT, resulting in higher anthocyanin accumulation and deeper red transgenic tobacco flowers; however, overexpression of PpMYB10.2/3 did not alter anthocyanin content and color of transgenic tobacco flowers when compared with wild-type flowers. Dual-luciferase assay showed that the co-infiltration of PpMYB10.1 with PpbHLH3 significantly increased the activity of PpUFGT promoter. We also found close relationships of two PpMYB10.1 allelic types, MYB10.1-1/MYB10.1-2, with the intensity of red skin coloration. CONCLUSION: We showed that PpMYB10.1 is a major regulator of anthocyanin accumulation in red-skinned peach and that it activates PpUFGT transcription. PpMYB10.2/3 may be involved in functions other than anthocyanin accumulation in peach. The peach cultivars having two MYB10.1-2 types resulted in the white skin color. By contrast, those with two MYB10.1-1 or MYB10.1-1/MYB10.1-2 types showed respective red or pale red skin color. These findings contribute to clarifying the molecular mechanisms of anthocyanin accumulation and generating gene-based markers linked to skin color phenotypes.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Prunus persica/genética , Factores de Transcripción/genética , Frutas/genética , Frutas/metabolismo , Fenotipo , Pigmentación , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Factores de Transcripción/metabolismo
5.
J Agric Food Chem ; 55(9): 3414-20, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17397180

RESUMEN

To elucidate the regulatory mechanisms of carotenogenesis in Japanese apricot (Prunus mume Siebold & Zucc.), the relationships between carotenoid accumulation and the expression of the carotenogenic genes, phytoene synthase (PmPSY-1), phytoene desaturase (PmPDS), zeta-carotene desaturase (PmZDS), lycopene beta-cyclase (PmLCYb), lycopene epsilon-cyclase (PmLCYe), beta-carotene hydroxylase (PmHYb), and zeaxanthin epoxidase (PmZEP), were analyzed in two cultivars with different ripening traits, 'Orihime' and 'Nanko.' In 'Orihime' fruits, large amounts of carotenoids accumulated on the tree, concomitant with the induction of PmPSY-1 and the downstream carotenogenic genes PmLCYb, PmHYb, and PmZEP. In 'Nanko' fruits, carotenoids accumulated mainly after harvest, correlating with an appreciable induction of PmPSY-1 expression, but the downstream genes were not notably induced, which may explain the lower total carotenoid content in 'Nanko' than in 'Orihime.' In both cultivars, a decrease in PmLCYe expression and increased or constant PmLCYb expression could cause the metabolic shift from beta,epsilon-carotenoid synthesis to beta,beta-carotenoid synthesis that occurs as ripening approaches. Next, the effects of ethylene on the expression of PmPSY-1 and carotenoid accumulation were investigated in 'Nanko' fruits treated with propylene or 1-methylcyclopropene (1-MCP). Propylene treatment induced both ethylene production and carotenoid accumulation. PmPSY-1 was constitutively expressed, but propylene treatment accelerated its induction. 1-MCP treatment caused a slight inhibition of carotenoid accumulation along with the repression, although not complete, of PmPSY-1. Collectively, although PmPSY-1 expression was not exclusively regulated by ethylene, both the notable induction of PmPSY-1 accelerated by ethylene and the subsequent induction of the downstream carotenogenic genes, especially PmLCYb, could be necessary for the massive carotenoid accumulation that occurs during ripening. Furthermore, the switch from PmLCYe expression to PmLCYb expression could cause beta,beta-carotenoid accumulation in both Japanese apricot cultivars.


Asunto(s)
Carotenoides/biosíntesis , Carotenoides/genética , Etilenos/farmacología , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prunus/metabolismo , Carotenoides/análisis , ADN Complementario/análisis , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Prunus/enzimología , Prunus/genética
6.
Plant Mol Biol ; 63(1): 109-23, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17006593

RESUMEN

This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S (1), S (2), and S (2m), found in this study encode mutated pollen determinants, SFB, while only S (2m) has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S (2m)-RNase is substituted by a tyrosine residue, thereby reducing RNase stability. The peach SFB mutations are similar to the SFB mutations found in SC haplotypes of sweet cherry (P. avium) and Japanese apricot (P. mume). SFB (1) of the S (1) haplotype, a mutant version of almond (P. dulcis) S (k) haplotype, encodes truncated SFB due to a 155 bp insertion. SFB (2) of the S (2) and S (2m) haplotypes, both of which are mutant versions of the S (a) haplotype in Japanese plum (P. salicina), encodes a truncated SFB due to a 5 bp insertion. Thus, regardless of the functionality of the pistil determinant, all three peach S haplotypes are SC haplotypes. Our finding that peach has mutant versions of S haplotypes that function in almond and Japanese plum, which are phylogenetically close and remote species, respectively, to peach in the subfamily Prunoideae of the Roasaceae, provides insight into the SC/SI evolution in Prunus. We discuss the significance of SC pollen part mutation in peach with special reference to possible differences in the SI mechanisms between Prunus and Solanaceae.


Asunto(s)
Haplotipos/genética , Mutación , Proteínas de Plantas/genética , Prunus/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Especiación Genética , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Prunus/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasas/genética , Ribonucleasas/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...