Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6960, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117329

RESUMEN

Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def3·Fe3+, at 52 µmol/L) could eliminate the need for holotransferrin supplementation during in vitro expansion and differentiation of erythroblast cultures to produce large numbers of enucleated RBC. Only the first stage, when hematopoietic stem cells committed to erythroblasts, required holotransferrin supplementation. RBCs cultured in presence of Def3·Fe3+ or holotransferrin (1000 µg/mL) were similar with respect to differentiation kinetics, expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Replacement of holotransferrin supplementation by Def3·Fe3+ was also successful in cultures of myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). Thus, iron-loaded deferiprone can partially replace holotransferrin as a supplement in chemically defined cell culture medium. This holds promise for a significant decrease in medium cost and improved economic perspectives of the large scale production of red blood cells for transfusion purposes.


Asunto(s)
Eritrocitos , Hierro , Animales , Humanos , Hierro/metabolismo , Deferiprona/farmacología , Eritrocitos/metabolismo , Quelantes del Hierro/uso terapéutico , Hemoglobinas/metabolismo , Células Cultivadas , Mamíferos/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478008

RESUMEN

Bioreactors are increasingly implemented for large scale cultures of various mammalian cells, which requires optimization of culture conditions. Such upscaling is also required to produce red blood cells (RBC) for transfusion and therapy purposes. However, the physiological suitability of RBC cultures to be transferred to stirred bioreactors is not well understood. PIEZO1 is the most abundantly expressed known mechanosensor on erythroid cells. It is a cation channel that translates mechanical forces directly into a physiological response. We investigated signaling cascades downstream of PIEZO1 activated upon transitioning stationary cultures to orbital shaking associated with mechanical stress, and compared the results to direct activation of PIEZO1 by the chemical agonist Yoda1. Erythroblasts subjected to orbital shaking displayed decreased proliferation, comparable to incubation in the presence of a low dose of Yoda1. Epo (Erythropoietin)-dependent STAT5 phosphorylation, and Calcineurin-dependent NFAT dephosphorylation was enhanced. Phosphorylation of ERK was also induced by both orbital shaking and Yoda1 treatment. Activation of these pathways was inhibited by intracellular Ca2+ chelation (BAPTA-AM) in the orbital shaker. Our results suggest that PIEZO1 is functional and could be activated by the mechanical forces in a bioreactor setup, and results in the induction of Ca2+-dependent signaling cascades regulating various aspects of erythropoiesis. With this study, we showed that Yoda1 treatment and mechanical stress induced via orbital shaking results in comparable activation of some Ca2+-dependent pathways, exhibiting that there are direct physiological outcomes of mechanical stress on erythroblasts.


Asunto(s)
Señalización del Calcio/fisiología , Eritroblastos/fisiología , Estrés Mecánico , Calcio/metabolismo , Calcio/farmacología , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Eritroblastos/efectos de los fármacos , Eritropoyesis/efectos de los fármacos , Eritropoyesis/fisiología , Humanos , Canales Iónicos/agonistas , Canales Iónicos/fisiología , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Pirazinas/farmacología , Rotación , Tiadiazoles/farmacología
3.
PLoS One ; 13(8): e0201690, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138317

RESUMEN

Erythropoiesis is regulated at many levels, including control of mRNA translation. Changing environmental conditions, such as hypoxia or the availability of nutrients and growth factors, require a rapid response enacted by the enhanced or repressed translation of existing transcripts. Cold shock domain protein e1 (Csde1/Unr) is an RNA-binding protein required for erythropoiesis and strongly upregulated in erythroblasts relative to other hematopoietic progenitors. The aim of this study is to identify the Csde1-containing protein complexes and investigate their role in post-transcriptional expression control of Csde1-bound transcripts. We show that Serine/Threonine kinase receptor-associated protein (Strap/Unrip), was the protein most strongly associated with Csde1 in erythroblasts. Strap is a WD40 protein involved in signaling and RNA splicing, but its role when associated with Csde1 is unknown. Reduced expression of Strap did not alter the pool of transcripts bound by Csde1. Instead, it altered the mRNA and/or protein expression of several Csde1-bound transcripts that encode for proteins essential for translational regulation during hypoxia, such as Hmbs, eIF4g3 and Pabpc4. Also affected by Strap knockdown were Vim, a Gata-1 target crucial for erythrocyte enucleation, and Elavl1, which stabilizes Gata-1 mRNA. The major cellular processes affected by both Csde1 and Strap were ribosome function and cell cycle control.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas Portadoras/genética , Ciclo Celular , Diferenciación Celular , Eritroblastos/citología , Eritroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
4.
Sci Rep ; 8(1): 2628, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422612

RESUMEN

Expression of the RNA-binding protein Csde1 (Cold shock domain protein e1) is strongly upregulated during erythropoiesis compared to other hematopoietic lineages. Csde1 expression is impaired in the severe congenital anemia Diamond Blackfan Anemia (DBA), and reduced expression of Csde1 in healthy erythroblasts impaired their proliferation and differentiation. To investigate the cellular pathways controlled by Csde1 in erythropoiesis, we identified the transcripts that physically associate with Csde1 in erythroid cells. These mainly encoded proteins involved in ribogenesis, mRNA translation and protein degradation, but also proteins associated with the mitochondrial respiratory chain and mitosis. Crispr/Cas9-mediated deletion of the first cold shock domain of Csde1 affected RNA expression and/or protein expression of Csde1-bound transcripts. For instance, protein expression of Pabpc1 was enhanced while Pabpc1 mRNA expression was reduced indicating more efficient translation of Pabpc1 followed by negative feedback on mRNA stability. Overall, the effect of reduced Csde1 function on mRNA stability and translation of Csde1-bound transcripts was modest. Clones with complete loss of Csde1, however, could not be generated. We suggest that Csde1 is involved in feed-back control in protein homeostasis and that it dampens stochastic changes in mRNA expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Eritroides/metabolismo , Regulación de la Expresión Génica , Proteostasis , Proteínas de Unión al ARN/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/genética , Eritropoyesis , Células HEK293 , Humanos , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Células Tumorales Cultivadas
5.
Haematologica ; 100(11): 1396-406, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26294724

RESUMEN

Expansion of erythroblasts from human peripheral blood mononuclear cells is 4- to 15-fold more efficient than that of CD34(+) cells purified from peripheral blood mononuclear cells. In addition, purified CD34(+) and CD34(-) populations from blood do not reconstitute this erythroid yield, suggesting a role for feeder cells present in blood mononuclear cells that increase hematopoietic output. Immunodepleting peripheral blood mononuclear cells for CD14(+) cells reduced hematopoietic stem and progenitor cell expansion. Conversely, the yield was increased upon co-culture of CD34(+) cells with CD14(+) cells (full contact or transwell assays) or CD34(+) cells re-constituted in conditioned medium from CD14(+) cells. In particular, CD14(++)CD16(+) intermediate monocytes/macrophages enhanced erythroblast outgrowth from CD34(+) cells. No effect of CD14(+) cells on erythroblasts themselves was observed. However, 2 days of co-culturing CD34(+) and CD14(+) cells increased CD34(+) cell numbers and colony-forming units 5-fold. Proliferation assays suggested that CD14(+) cells sustain CD34(+) cell survival but not proliferation. These data identify previously unrecognized erythroid and non-erythroid CD34(-) and CD34(+) populations in blood that contribute to the erythroid yield. A flow cytometry panel containing CD34/CD36 can be used to follow specific stages during CD34(+) differentiation to erythroblasts. We have shown modulation of hematopoietic stem and progenitor cell survival by CD14(+) cells present in peripheral blood mononuclear cells which can also be found near specific hematopoietic niches in the bone marrow.


Asunto(s)
Células Eritroides/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Supervivencia Celular , Técnicas de Cocultivo , Células Eritroides/citología , Células Madre Hematopoyéticas/citología , Humanos , Macrófagos/citología , Monocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...