RESUMEN
Surveillance of antimicrobial resistance (AMR) is a crucial strategy to combat AMR. Using routine surveillance data, we could detect and control hospital outbreaks of AMR bacteria as early as possible. Previously, we developed a framework for automatic detection of clusters of AMR bacteria using SaTScan, a free cluster detection tool integrated into WHONET. WHONET is a free software used globally for microbiological surveillance data management. We applied this framework to data from the Japan Nosocomial Infections Surveillance (JANIS), one of the world's most comprehensive and largest national AMR surveillance systems. Although WHONET-SaTScan has several cluster detection algorithms, no published studies have compared how different algorithms can produce varying results in cluster detection. Here, we conducted a comparison to detect clusters of vancomycin-resistant enterococci (VRE), which has been rare in Japan, by analyzing combinations of resistance to several key antimicrobials ("resistance profiles") using the comprehensive national routine AMR surveillance data of JANIS and validated the detection capabilities of each algorithm using publicly available reports of VRE clusters. All publicly reported VRE hospital outbreaks were detected as statistical clusters using the space-time uniform algorithm implemented in WHONET-SaTScan. In contrast, only 18.8% of the publicly reported outbreaks were detected using another algorithm (space-time permutation). The space-time uniform algorithm was also effective in identifying hospital wards affected by outbreaks attributed to specific resistance profiles. Although half of the publicly reported outbreaks were attributed to VRE resistant to five particular antimicrobials, four other resistance profiles also contributed to the outbreaks, highlighting the diversity of AMR bacteria within these occurrences. Our comparison revealed a clear advantage in using an algorithm (space-time uniform) for detecting VRE clusters in WHONET-SaTScan based on national surveillance data and further demonstrated the capability to distinguish detected clusters based on resistance profiles.
Asunto(s)
Algoritmos , Infección Hospitalaria , Brotes de Enfermedades , Humanos , Japón/epidemiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Análisis por ConglomeradosRESUMEN
During surveillance of Staphylococcus aureus in lesions from patients with atopic dermatitis (AD), we isolated Staphylococcus argenteus, a species registered in 2011 as a new member of the genus Staphylococcus and previously considered a lineage of S. aureus. Genome sequence comparisons between S. argenteus isolates and representative S. aureus clinical isolates from various origins revealed that the S. argenteus genome from AD patients closely resembles that of S. aureus causing skin infections. We previously reported that 17%-22% of S. aureus isolated from skin infections produce staphylococcal enterotoxin Y (SEY), which predominantly induces T-cell proliferation via the T-cell receptor (TCR) Vα pathway. Complete genome sequencing of S. argenteus isolates revealed a gene encoding a protein similar to superantigen SEY, designated as SargEY, on its chromosome. Population structure analysis of S. argenteus revealed that these isolates are ST2250 lineage, which was the only lineage positive for the SEY-like gene among S. argenteus. Recombinant SargEY demonstrated immunological cross-reactivity with anti-SEY serum. SargEY could induce proliferation of human CD4+ and CD8+ T cells, as well as production of TNF-α and IFN-γ. SargEY showed emetic activity in a marmoset monkey model. SargEY and SET (a phylogenetically close but uncharacterized SE) revealed their dependency on TCR Vα in inducing human T-cell proliferation. Additionally, TCR sequencing revealed other previously undescribed Vα repertoires induced by SEH. SargEY and SEY may play roles in exacerbating the respective toxin-producing strains in AD. IMPORTANCE: Staphylococcus aureus is frequently isolated from active lesions of atopic dermatitis (AD) patients. We reported that 17%-22% of S. aureus isolated from AD patients produced a novel superantigen staphylococcal enterotoxin Y (SEY). Unlike many S. aureus superantigens that activate T cells via T-cell receptor (TCR) Vß, SEY activates T cells via TCR Vα and stimulates cytokine secretion. Staphylococcus argenteus was isolated from AD patients during the surveillance for S. aureus. Phylogenetic comparison of the genome indicated that the isolate was very similar to S. aureus causing skin infections. The isolate encoded a SEY-like protein, designated SargEY, which, like SEY, activated T cells via the TCR Vα. ST2250 is the only lineage positive for SargEY gene. ST2250 S. argenteus harboring a superantigen SargEY gene may be a novel staphylococcal clone that infects human skin and is involved in the exacerbation of AD.
Asunto(s)
Dermatitis Atópica , Enterotoxinas , Genoma Bacteriano , Staphylococcus , Superantígenos , Humanos , Dermatitis Atópica/microbiología , Dermatitis Atópica/inmunología , Superantígenos/genética , Superantígenos/inmunología , Staphylococcus/genética , Staphylococcus/inmunología , Staphylococcus/clasificación , Enterotoxinas/genética , Enterotoxinas/inmunología , Animales , Filogenia , Genómica , Secuenciación Completa del Genoma , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunologíaRESUMEN
OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has necessitated significant changes in medical systems, social behaviours, and non-pharmaceutical interventions (NPIs). We aimed to determine the effect of the COVID-19 pandemic on changes in the epidemiology of respiratory-transmitted bacteria that have been unexplored. METHODS: We utilised a comprehensive national surveillance database from 2018 to 2021 to compare monthly number of patients with four respiratory-transmitted human-to-human bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pyogenes) before and after the COVID-19 pandemic, stratified by specimen sources and age groups. RESULTS: The incidence of detected patients with S. pneumoniae, H. influenzae, and S. pyogenes from both respiratory and blood cultures significantly decreased from 2019 to 2020. In 2021, the incidence of detected patients with the respiratory-transmitted bacterial species, except for S. pyogenes, from respiratory cultures, increased again from April to July, primarily affecting the 0-4-year age group. CONCLUSIONS: Our comprehensive national surveillance data analysis demonstrates the dynamic changes and effects of NPIs on respiratory-transmitted bacteria during the COVID-19 pandemic, with variations observed among species, specimen sources, and age groups.
Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , SARS-CoV-2 , Streptococcus pyogenes , Humanos , COVID-19/epidemiología , COVID-19/transmisión , Preescolar , Lactante , Niño , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/transmisión , Infecciones del Sistema Respiratorio/virología , Adulto , Streptococcus pyogenes/aislamiento & purificación , Adolescente , Persona de Mediana Edad , Haemophilus influenzae/aislamiento & purificación , Incidencia , Recién Nacido , Streptococcus pneumoniae/aislamiento & purificación , Adulto Joven , Anciano , Moraxella catarrhalis/aislamiento & purificación , Masculino , Femenino , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/transmisión , PandemiasRESUMEN
To isolate specific bacteria from samples constituting the microbiota, it is essential to employ selective media that suppress the growth of resident bacteria other than specific target bacteria. Selective media for clinically important Actinomyces (including Schaalia, which was previously taxonomically classified as part of the genus Actinomyces) have been limited because they have been designed for a limited range of species within the genus and require ingredients which are difficult to prepare and handle. This study aimed to develop a selective medium [referred to as Actinomyces and Schaalia Selective Medium (ASSM)] for the isolation of a broad range of Actinomyces and Schaalia species from samples mixed with resident bacteria. The composition of ASSM includes yeast extract, agar, brain heart infusion (BHI), levofloxacin (LVFX), fosfomycin (FOM), colistin (CL) and metronidazole (MNZ). Evaluation of the medium using 24 swab samples serially collected from the roots of the teeth of a healthy individual for whom metagenome sequencing data of a saliva sample are publicly available revealed that ASSM adjusted to concentrations of LVFX 0.5 mg l-1, FOM 5 mg l-1, CL 1 mg l-1 and MNZ 2 mg l-1 and cultured anaerobically at 35â°C for 7 days enabled the isolation of Actinomyces species from 37.5â% of the samples. The inclusion of CL and MNZ in ASSM can also be useful for samples harbouring other bacterial species. The selective isolation medium is expected to contribute to studies investigating the relationship between these bacteria and their pathogenesis or disease.
RESUMEN
Background: The spread of transmissible plasmids with carbapenemase genes has contributed to a global increase in carbapenemase-producing Enterobacterales over the past two decades, with blaNDM and blaOXA among the most prevalent carbapenemase genes. Objectives: To characterize an Escherichia coli isolate co-carrying blaNDM-5 and blaOXA-181 (JBEHAAB-19-0176) that was isolated in the Japan Antimicrobial Resistant Bacterial Surveillance in 2019-20, and to evaluate the functional advantage of carrying both genes as opposed to only one. Methods: The whole-genome sequence of the isolate was determined using long- and short-read sequencing. Growth assay and co-culture experiments were performed for phenotypic characterization in the presence of different ß-lactam antibiotics. Results: WGS analysis showed that blaNDM-5 and blaOXA-181 were carried by the same IncX3 plasmid, pJBEHAAB-19-0176_NDM-OXA. Genetic characterization of the plasmid suggested that the plasmid emerged through the formation of a co-integrate and resolution of two typical IncX3 plasmids harbouring blaNDM-5 and blaOXA-181, which involved two recombination events at the IS3000 and IS26 sequences. When cultured in the presence of piperacillin or cefpodoxime, the growth rate of the transformant co-harbouring blaNDM-5 and blaOXA-181 was significantly higher than the transformant with only blaNDM-5. Furthermore, in co-culture where the two blaNDM-5-harbouring transformants were allowed to compete directly, the strain additionally harbouring blaOXA-181 showed a marked growth advantage. Conclusions: The additional carriage of blaOXA-181 confers a selective advantage to bacteria in the presence of piperacillin and cefpodoxime. These findings may explain the current epidemiology of carbapenemase-producing Enterobacterales, in which bacteria carrying both blaNDM-5 and blaOXA-48-like genes have emerged independently worldwide.
RESUMEN
OBJECTIVES: The treatment options available for infections caused by multidrug-resistant Gram-negative pathogens are often limited. Cefiderocol (CFDC) is a novel siderophore cephalosporin that exhibits activity against these pathogens. Several studies have reported the in vitro activity of CFDC against isolates from Europe, the United States, and China, but the activity against carbapenem-resistant bacteria with IMP-type carbapenemase has not been extensively studied. We, therefore, studied the in vitro activities of CFDC against carbapenem-resistant bacteria with available genomic backgrounds based on whole-genome sequencing (WGS) in Japan, where the IMP-type is the predominant carbapenemase produced by Gram-negative rods. METHODS: We selected 603 isolates (528 Enterobacterales, 18 Pseudomonas aeruginosa, and 57 Acinetobacter spp.) from a collection of Gram-negative clinical isolates collected during a Japan Antimicrobial Resistance Bacterial Surveillance program and evaluated the antimicrobial activities of CFDC, ceftolozane/tazobactam (CTLZ/TAZ), imipenem-relebactam (IPM/REL), and ceftazidime/avibactam (CAZ/AVI) against carbapenemase-producing Enterobacterales, carbapenemase-non-producing meropenem-non-susceptible Enterobacterales, and carbapenemase-producing nonfermentative bacteria. RESULTS: Among these, 97.7% of carbapenemase-producing Enterobacterales (99.2% of IMP-type carbapenemase-producing Enterobacterales), 100% of carbapenemase-producing P. aeruginosa, and 91.2% of carbapenemase-producing Acinetobacter spp. were susceptible to CFDC, showing better antimicrobial activity than the other antimicrobial agents evaluated in this study. CFDC was highly effective against class A-, B-, and D ß-lactamase-harbouring isolates when compared to the other antimicrobial agents. In addition, the relationship between CFDC resistance and three genetic factors involved in resistance was discussed. CONCLUSIONS: This is the first large-scale study to systematically demonstrate the efficacy of CFDC against IMP-type carbapenemase-producing strains with known genomic backgrounds.
Asunto(s)
Acinetobacter , Antibacterianos , Proteínas Bacterianas , Cefiderocol , Cefalosporinas , Bacterias Gramnegativas , Meropenem , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Secuenciación Completa del Genoma , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Cefalosporinas/farmacología , Japón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Meropenem/farmacología , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/enzimología , Acinetobacter/efectos de los fármacos , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/microbiología , Compuestos de Azabiciclo/farmacología , Tazobactam/farmacología , Combinación de Medicamentos , Imipenem/farmacología , Ceftazidima/farmacología , Monitoreo EpidemiológicoRESUMEN
Osteomyelitis of the jaw is a severe inflammatory disorder that affects bones, and it is categorized into two main types: chronic bacterial and nonbacterial osteomyelitis. Although previous studies have investigated the association between these diseases and the oral microbiome, the specific taxa associated with each disease remain unknown. In this study, we conducted shotgun metagenome sequencing (≥10 Gb from ≥66,395,670 reads per sample) of bulk DNA extracted from saliva obtained from patients with chronic bacterial osteomyelitis (N = 5) and chronic nonbacterial osteomyelitis (N = 10). We then compared the taxonomic composition of the metagenome in terms of both taxonomic and sequence abundances with that of healthy controls (N = 5). Taxonomic profiling revealed a statistically significant increase in both the taxonomic and sequence abundance of Mogibacterium in cases of chronic bacterial osteomyelitis; however, such enrichment was not observed in chronic nonbacterial osteomyelitis. We also compared a previously reported core saliva microbiome (59 genera) with our data and found that out of the 74 genera detected in this study, 47 (including Mogibacterium) were not included in the previous meta-analysis. Additionally, we analyzed a core-genome tree of Mogibacterium from chronic bacterial osteomyelitis and healthy control samples along with a reference complete genome and found that Mogibacterium from both groups was indistinguishable at the core-genome and pan-genome levels. Although limited by the small sample size, our study provides novel evidence of a significant increase in Mogibacterium abundance in the chronic bacterial osteomyelitis group. Moreover, our study presents a comparative analysis of the taxonomic and sequence abundances of all genera detected using deep salivary shotgun metagenome data. The distinct enrichment of Mogibacterium suggests its potential as a marker to distinguish between patients with chronic nonbacterial osteomyelitis and chronic bacterial osteomyelitis, particularly at the early stages when differences are unclear.
Asunto(s)
Metagenómica , Microbiota , Osteomielitis , Saliva , Humanos , Saliva/microbiología , Osteomielitis/microbiología , Femenino , Microbiota/genética , Masculino , Persona de Mediana Edad , Metagenómica/métodos , Enfermedad Crónica , Adulto , Metagenoma , AncianoRESUMEN
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Asunto(s)
Campylobacter coli , Campylobacter jejuni , Epistasis Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Recombinación Genética , Campylobacter jejuni/genética , Campylobacter coli/genética , Evolución Molecular , Adaptación Fisiológica/genética , Adaptación Biológica/genéticaRESUMEN
Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.
Asunto(s)
Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Japón/epidemiología , Carbapenémicos/farmacología , Antibacterianos/farmacología , Humanos , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/tratamiento farmacológico , beta-Lactamasas/genética , Genoma Bacteriano/genética , Combinación Piperacilina y Tazobactam/uso terapéutico , Combinación Piperacilina y Tazobactam/farmacología , Secuenciación Completa del Genoma , Meropenem/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Amicacina/farmacologíaRESUMEN
BACKGROUND: Although there is a growing concern and policy regarding infections or colonization caused by resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), the prognosis of MRSA infections compared to that of methicillin-susceptible Staphylococcus aureus (MSSA) infections remains controversial. Moreover, there have not been any studies comparing both the burden of disease and its impact on the healthcare economy between MRSA infection and colonization while adjusting for confounding factors. These comparisons are crucial for developing effective infection control measures and healthcare policies. We aimed to compare the disease and economic burden between MRSA and MSSA infections and between MRSA infection and colonization. METHODS: We retrospectively investigated data of 496 in-patients with MRSA or MSSA infections and of 1178 in-patients with MRSA infections or MRSA colonization from a university hospital in Japan from 2016 to 2021. We compared in-hospital mortality, length of stay, and hospital charges between in-patients with MRSA and MSSA infections and those with MRSA infections and MRSA colonization using multiple regressions. We combined surveillance data, including all microbiological test results, data on patients with infections, treatment histories, and clinical outcomes, to create the datasets. RESULTS: There was no statistically significant difference in in-hospital mortality rates between matched MRSA vs. MSSA infections and MRSA infection vs. colonization. On the contrary, the adjusted effects of the MRSA infection compared to those of MSSA infection on length of stay and hospital charges were 1.21-fold (95% confidence interval [CI] 1.03-1.42, P = 0.019) and 1.70-fold (95% CI 1.39-2.07, P < 0.00001), respectively. The adjusted effects of the MRSA infection compared to those of MRSA colonization on length of stay and hospital charges were 1.41-fold (95% CI 1.25-1.58, P < 0.00001) and 1.53-fold (95% CI 1.33-1.75, P < 0.00001), respectively. Regarding confounding factors, hemodialysis or hemofiltration was consistently identified and adjusted for in the multiple regression analyses comparing MRSA and MSSA infections, as well as MRSA infection and MRSA colonization. CONCLUSIONS: MRSA infection was associated with longer length of stay and higher hospital charges than both MSSA infection and MRSA colonization. Furthermore, hemodialysis or hemofiltration was identified as a common underlying factor contributing to increased length of stay and hospital charges.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Estudios Retrospectivos , Estrés Financiero , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Hospitales UniversitariosRESUMEN
Monitoring antibiotic-resistant bacteria (ARB) and understanding the effects of antimicrobial drugs on the human microbiome and resistome are crucial for public health. However, no study has investigated the association between antimicrobial treatment and the microbiome-resistome relationship in long-term care facilities, where residents act as reservoirs of ARB but are not included in the national surveillance for ARB. We conducted shotgun metagenome sequencing of oral and stool samples from long-term care facility residents and explored the effects of antimicrobial treatment on the human microbiome and resistome using two types of comparisons: cross-sectional comparisons based on antimicrobial treatment history in the past 6 months and within-subject comparisons between stool samples before, during and 2-4 weeks after treatment using a single antimicrobial drug. Cross-sectional analysis revealed two characteristics in the group with a history of antimicrobial treatment: the archaeon Methanobrevibacter was the only taxon that significantly increased in abundance, and the total abundance of antimicrobial resistance genes (ARGs) was also significantly higher. Within-subject comparisons showed that taxonomic diversity did not decrease during treatment, suggesting that the effect of the prescription of a single antimicrobial drug in usual clinical treatment on the gut microbiota is likely to be smaller than previously thought, even among very elderly people. Additional analysis of the detection limit of ARGs revealed that they could not be detected when contig coverage was <2.0. This study is the first to report the effects of usual antimicrobial treatments on the microbiome and resistome of long-term care facility residents.
Asunto(s)
Antiinfecciosos , Microbiota , Anciano , Humanos , Antagonistas de Receptores de Angiotensina , Estudios Transversales , Cuidados a Largo Plazo , Inhibidores de la Enzima Convertidora de Angiotensina , ADN , Análisis de Secuencia de ADNRESUMEN
Staphylococcus aureus is a commensal bacterium in humans, but it sometimes causes opportunistic infectious diseases such as suppurative skin disease, pneumonia, and enteritis. Therefore, it is important to determine the prevalence of S. aureus and methicillin-resistant S. aureus (MRSA) in individuals, especially older adults. In this study, we investigated the prevalence of S. aureus and MRSA in the oral cavity and feces of residents in long-term care facilities (LTCFs). S. aureus was isolated from the oral cavity of 61/178 (34.3%) participants, including 28 MRSA-positive participants (15.7%), and from the feces of 35/127 (27.6%) participants, including 16 MRSA-positive participants (12.6%). S. aureus and MRSA were isolated from both sites in 19/127 individuals (15.0%) and 10/127 individuals (7.9%), respectively. Among 19 participants with S. aureus isolation from both sites, 17 participants showed the same sequence type (ST) type. Then, we analyzed the correlation of S. aureus and MRSA in the oral cavity and rectum with the participant's condition. S. aureus and MRSA positivity in the oral cavity was significantly related to tube feeding, while there was no correlation of rectal S. aureus/MRSA with any factors. Our findings regarding the oral inhabitation of MRSA and its risk factors indicate the importance of considering countermeasures against MRSA infection in LTCFs.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Anciano , Staphylococcus aureus , Cuidados a Largo Plazo , Recto , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , PrevalenciaRESUMEN
BACKGROUND: Antimicrobial use (AMU) in primary care is a contributing factor to the emergence of antimicrobial-resistant bacteria. We assessed the potential effects of AMU on the prevalence of a combination of resistance phenotypes in bacteraemic Escherichia coli in outpatient care settings between primary care facilities ('clinics') and hospitals. METHODS: Population-weighted total AMU calculated from the national database was expressed as DDDs per 1000 inhabitants per day (DID). National data for all routine microbiological test results were exported from the databases of a major commercial clinical laboratory, including 16 484 clinics, and the Japan Nosocomial Infections Surveillance, including 1947 hospitals. AMU and the prevalence of combinations of resistance phenotypes in bacteraemic E. coli isolates were compared between clinics and hospitals. RESULTS: The five most common bacteria isolated from patients with bacteraemia were the same in clinics, outpatient settings and inpatient settings in hospitals, with E. coli as the most frequent. Oral third-generation cephalosporins and fluoroquinolones were the top two AMU outpatient drugs, except for macrolides, and resulted in at least three times higher AMU in clinics than in hospitals. The percentage of E. coli isolates resistant to both drugs in clinics (18.7%) was 5.6% higher than that in hospitals (13.1%) (P < 10-8). CONCLUSIONS: Significant AMU, specifically of oral third-generation cephalosporins and fluoroquinolones, in clinics is associated with a higher prevalence of E. coli isolates resistant to both drugs. This study provides a basis for national interventions to reduce inappropriate AMU in primary care settings.
Asunto(s)
Antiinfecciosos , Bacteriemia , Humanos , Escherichia coli , Japón/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Fluoroquinolonas/farmacología , Bacteriemia/tratamiento farmacológico , Bacteriemia/epidemiología , Cefalosporinas/farmacología , Atención Primaria de Salud , Farmacorresistencia BacterianaRESUMEN
Antimicrobial resistance is a global health concern; Enterobacterales resistant to third-generation cephalosporins (3GCs) and carbapenems are of the highest priority. Here, we conducted genome sequencing and standardized quantitative antimicrobial susceptibility testing of 4,195 isolates of Escherichia coli and Klebsiella pneumoniae resistant to 3GCs and Enterobacterales with reduced meropenem susceptibility collected across Japan. Our analyses provided a complete classification of 3GC resistance mechanisms. Analyses with complete reference plasmids revealed that among the blaCTX-M extended-spectrum ß-lactamase genes, blaCTX-M-8 was typically encoded in highly similar plasmids. The two major AmpC ß-lactamase genes were blaCMY-2 and blaDHA-1. Long-read sequencing of representative plasmids revealed that approximately 60% and 40% of blaCMY-2 and blaDHA-1 were encoded by such plasmids, respectively. Our analyses identified strains positive for carbapenemase genes but phenotypically susceptible to carbapenems and undetectable by standard antimicrobial susceptibility testing. Systematic long-read sequencing enabled reconstruction of 183 complete plasmid sequences encoding three major carbapenemase genes and elucidation of their geographical distribution stratified by replicon types and species carrying the plasmids and potential plasmid transfer events. Overall, we provide a blueprint for a national genomic surveillance study that integrates standardized quantitative antimicrobial susceptibility testing and characterizes resistance determinants.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Escherichia coli , Plásmidos/genética , Genómica , Carbapenémicos/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Asunto(s)
Listeria monocytogenes , Listeria , Humanos , Listeria/genética , Estudio de Asociación del Genoma Completo , Biopelículas , Listeria monocytogenes/genéticaRESUMEN
IMPORTANCE: IncX3 plasmids harboring bla NDM-5 play a major role in the spread of carbapenem resistance in Asia, particularly in China, in clinical and environmental settings. In this study, we present that Enterobacterales isolates carrying IncX3 plasmids harboring bla NDM-5 have been disseminated in Japan, where their identification was previously rare. In addition, bla NDM-16b, a single-nucleotide variant of bla NDM-5, was found to be carried by an identical IncX3 plasmid. A comparative sequence analysis revealed that the bla NDM-16b gene emerged from a single nucleotide substitution on an IncX3 plasmid harboring bla NDM-5. The bla NDM-16b gene did not confer elevated carbapenem resistance compared to bla NDM-5 in our assay using transformants carrying the plasmid harboring either of these genes, although the A233V substitution was reported to confer stability to the enzyme in ion-depleted conditions. Nevertheless, vigilance regarding the emergence of novel variants is required.
Asunto(s)
Carbapenémicos , beta-Lactamasas , beta-Lactamasas/genética , Japón , Plásmidos/genética , Carbapenémicos/farmacología , NucleótidosRESUMEN
Background: The increasing prevalence of anaerobic bacteremia is a major concern worldwide and requires longitudinal monitoring. Methods: We present one of the largest and longest longitudinal studies on the prevalence and antimicrobial resistance of Bacteroides, Clostridium, Fusobacterium, and Prevotella spp. isolated from blood culture samples using national comprehensive surveillance data in Japan during 2011-2020 as part of the Japan Nosocomial Infections Surveillance. Results: Data for 41 949 Bacteroides spp., 40 603 Clostridium spp., 7013 Fusobacterium spp., and 5428 Prevotella spp. isolates were obtained. The incidences of bacteremia caused by Bacteroides fragilis, Clostridium perfringens, and Fusobacterium nucleatum significantly increased during the period (P < .0001). Among the 20 species analyzed, 18 showed no significant changes in susceptibility over time, including B. fragilis, C perfringens, and F. nucleatum. However, resistance to clindamycin increased in B. thetaiotaomicron (P = .0312), and resistance to ampicillin increased in B. ovatus (P = .0008). Conclusions: Our comprehensive national surveillance data analysis demonstrated a continuous increase in the incidence of anaerobic bacteremia, particularly in B. fragilis, C. perfringens, and F. nucleatum. This may be linked to the increasing number of colorectal cancer cases or advancing methods for species identification and susceptibility testing, requiring cautious interpretation. The discovery of an upsurge in anaerobic bacteremia and potential alterations in susceptibility highlights the necessity for more extensive studies in this field.