RESUMEN
BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.
Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células Madre , Transducción de Señal , Carcinogénesis , ARN , Conductos Biliares Intrahepáticos , Factores de Transcripción ForkheadRESUMEN
Cell-free DNA (cfDNA) in human plasma provides access to molecular information about the pathological processes in the organs or tumors from which it originates. These DNA fragments are derived from fragmented chromatin in dying cells and retain some of the cell-of-origin histone modifications. In this study, we applied chromatin immunoprecipitation of cell-free nucleosomes carrying active chromatin modifications followed by sequencing (cfChIP-seq) to 268 human samples. In healthy donors, we identified bone marrow megakaryocytes, but not erythroblasts, as major contributors to the cfDNA pool. In patients with a range of liver diseases, we showed that we can identify pathology-related changes in hepatocyte transcriptional programs. In patients with metastatic colorectal carcinoma, we detected clinically relevant and patient-specific information, including transcriptionally active human epidermal growth factor receptor 2 (HER2) amplifications. Altogether, cfChIP-seq, using low sequencing depth, provides systemic and genome-wide information and can inform diagnosis and facilitate interrogation of physiological and pathological processes using blood samples.
Asunto(s)
Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Sistema Libre de Células , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metástasis de la Neoplasia , Nucleosomas/genética , Análisis de Secuencia de ADN/métodosRESUMEN
Nodding Syndrome (NS) is a fatal pediatric epilepsy of unknown etiology, accompanied by multiple neurological impairments, and associated with Onchocerca volvulus (Ov), malnutrition, war-induced trauma, and other insults. NS patients have neuroinflammation, and ~50% have cross-reactive Ov/Leiomodin-1 neurotoxic autoimmune antibodies. RESULTS: Studying 30 South Sudanese NS patients and a similar number of healthy subjects from the same geographical region, revealed autoimmune antibodies to 3 extracellular peptides of ionotropic glutamate receptors in NS patients: AMPA-GluR3B peptide antibodies (86%), NMDA-NR1 peptide antibodies (77%) and NMDA-NR2 peptide antibodies (87%) (in either 1:10, 1:100 or 1:1000 serum dilution). In contrast, NS patients did not have 26 other well-known autoantibodies that target the nervous system in several autoimmune-mediated neurological diseases. We demonstrated high expression of both AMPA-GluR3 and NMDA-NR1 in human neural cells, and also in normal human CD3+ T cells of both helper CD4+ and cytotoxic CD8+ types. Patient's GluR3B peptide antibodies were affinity-purified, and by themselves precipitated short 70 kDa neuronal GluR3. NS patient's affinity-purified GluR3B peptide antibodies also bound to, induced Reactive Oxygen Species (ROS) in, and killed both human neural cells and T cells within 1-2 hours only. NS patient's purified IgGs, or serum (1:10 or 1:30), induced similar effects. In vivo video EEG experiments in normal mice, revealed that when NS patient's purified IgGs were released continuously (24/7 for 1 week) in normal mouse brain, they induced all the following: 1.Seizures, 2. Cerebellar Purkinje cell loss, 3. Degeneration in the hippocampus and cerebral cortex, and 4. Elevation of CD3+ T cells, and of activated Mac-2+microglia and GFAP+astrocytes in both the gray and white matter of the cerebral cortex, hippocampus, corpus calossum and cerebellum of mice. NS patient's serum cytokines: IL-1ß, IL-2, IL-6, IL-8, TNFα, IFNγ, are reduced by 85-99% compared to healthy subjects, suggesting severe immunodeficiency in NS patients. This suspected immunodeficiency could be caused by combined effects of the: 1. Chronic Ov infection, 2. Malnutrition, 3. Killing of NS patient's T cells by patient's own GluR3B peptide autoimmune antibodies (alike the killing of normal human T cells by the NS patient's GluR3B peptide antibodies found herein in vitro). CONCLUSIONS: Regardless of NS etiology, NS patients suffer from 'Dual-targeted Autoimmune Sword': autoimmune AMPA GluR3B peptide antibodies that bind, induce ROS in, and kill both neural cells and T cells. These neurotoxic and immunotoxic GluR3B peptide autoimmune antibodies, and also NS patient's NMDA-NR1/NR2A and Ov/Leiomodin-1 autoimmune antibodies, must be silenced or removed. Moreover, the findings of this study are relevant not only to NS, but also to many more patients with other types of epilepsy, which have GluR3B peptide antibodies in serum and/or CSF. This claim is based on the following facts: 1. The GluR3 subunit is expressed in neural cells in crucial brains regions, in motor neurons in the spinal cord, and also in other cells in the body, among them T cells of the immune system, 2. The GluR3 subunit has diverse neurophysiological role, and its deletion or abnormal function can: disrupt oscillatory networks of both sleep and breathing, impair motor coordination and exploratory activity, and increase the susceptibility to generate seizures, 3. GluR3B peptide antibodies were found so far in ~27% of >300 epilepsy patients worldwide, which suffer from various other types of severe, intractable and enigmatic epilepsy, and which turned out to be 'Autoimmune Epilepsy'. Furthermore, the findings of this study could be relevant to different neurological diseases besides epilepsy, since other neurotransmitter-receptors autoantibodies are present in other neurological and psychiatric diseases, e.g. autoimmune antibodies against other GluRs, Dopamine receptors, GABA receptors, Acetylcholine receptors and others. These neurotransmitter-receptors autoimmune autoantibodies might also act as 'Dual-targeted Autoimmune Sword' and damage both neural cells and T cells (as the AMPA-GluR3B peptide antibodies induced in the present study), since T cells, alike neural cells, express most if not all these neurotransmitter receptors, and respond functionally to the respective neurotransmitters - a scientific and clinical topic we coined 'Nerve-Driven Immunity'.
Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Síndrome del Cabeceo/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores AMPA/inmunología , Adolescente , Adulto , Autoanticuerpos/sangre , Autoanticuerpos/aislamiento & purificación , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Voluntarios Sanos , Humanos , Inmunoglobulina G , Masculino , Neuroinmunomodulación/inmunología , Neuronas/inmunología , Neuronas/patología , Síndrome del Cabeceo/sangre , Síndrome del Cabeceo/patología , Linfocitos T/inmunología , Linfocitos T/patología , Adulto JovenRESUMEN
BACKGROUND & AIMS: Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS: We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS: Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced ß-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS: We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.
Asunto(s)
Reguladores del Metabolismo de Lípidos/farmacología , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Obesidad/tratamiento farmacológico , Animales , Antagomirs/administración & dosificación , Benzamidas/farmacología , Benzamidas/uso terapéutico , Peso Corporal , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Ácidos Grasos no Esterificados/metabolismo , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Reguladores del Metabolismo de Lípidos/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/sangre , Mutación , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacosRESUMEN
BACKGROUND & AIMS: Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. METHODS: We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. RESULTS: We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of ß-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. CONCLUSIONS: In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.