Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2221114120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276387

RESUMEN

Transcription elongation by multi-subunit RNA polymerases (RNAPs) is regulated by auxiliary factors in all organisms. NusG/Spt5 is the only universally conserved transcription elongation factor shared by all domains of life. NusG is a component of antitermination complexes controlling ribosomal RNA operons, an essential antipausing factor, and a transcription-translation coupling factor in Escherichia coli. We employed RNET-seq for genome-wide mapping of RNAP pause sites in wild-type and NusG-depleted cells. We demonstrate that NusG is a major antipausing factor that suppresses thousands of backtracked and nonbacktracked pauses across the E. coli genome. The NusG-suppressed pauses were enriched immediately downstream from the translation start codon but were also abundant elsewhere in open reading frames, small RNA genes, and antisense transcription units. This finding revealed a strong similarity of NusG to Spt5, which stimulates the elongation rate of many eukaryotic genes. We propose a model in which promoting forward translocation and/or stabilization of RNAP in the posttranslocation register by NusG results in suppression of pausing in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética , Proteínas de Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo
2.
J Bacteriol ; 204(5): e0053421, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35258320

RESUMEN

Transcription elongation is a highly processive process that is punctuated by RNA polymerase (RNAP) pausing. Long-lived pauses can provide time for diverse regulatory events to occur, which play important roles in modulating gene expression. Transcription elongation factors can dramatically affect RNAP pausing in vitro. The genome-wide role of such factors in pausing in vivo has been examined only for NusG in Bacillus subtilis. NusA is another transcription elongation factor known to stimulate pausing of B. subtilis and Escherichia coli RNAP in vitro. Here, we present the first in vivo study to identify the genome-wide role of NusA in RNAP pausing. Using native elongation transcript sequencing followed by RNase digestion (RNET-seq), we analyzed factor-dependent RNAP pausing in B. subtilis and found that NusA has a relatively minor role in RNAP pausing compared to NusG. We demonstrate that NusA has both stimulating and suppressing effects on pausing in vivo. Based on our thresholding criteria on in vivo data, NusA stimulates pausing at 129 pause peaks in 93 different genes or 5' untranslated regions (5' UTRs). Putative pause hairpins were identified for 87 (67%) of the 129 NusA-stimulated pause peaks, suggesting that RNA hairpins are a common component of NusA-stimulated pause signals. However, a consensus sequence was not identified as a NusA-stimulated pause motif. We further demonstrate that NusA stimulates pausing in vitro at some of the pause sites identified in vivo. IMPORTANCE NusA is an essential transcription elongation factor that was assumed to play a major role in RNAP pausing. NusA stimulates pausing in vitro; however, the essential nature of NusA had prevented an assessment of its role in pausing in vivo. Using a NusA depletion strain and RNET-seq, we identified a similar number of NusA-stimulated and NusA-suppressed pause peaks throughout the genome. NusA-stimulated pausing was confirmed at several sites in vitro. However, NusA did not always stimulate pausing at sites identified in vivo, while in other instances NusA stimulated pausing at sites not observed in vivo. We found that NusA has only a minor role in stimulating RNAP pausing in B. subtilis.


Asunto(s)
Bacillus subtilis , Proteínas de Escherichia coli , Regiones no Traducidas 5' , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Transcriptoma
3.
Elife ; 102021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33835023

RESUMEN

NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Expresión Génica , Terminación de la Transcripción Genética , Factores de Elongación Transcripcional/genética , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Factores de Elongación Transcripcional/metabolismo
4.
Nat Commun ; 12(1): 906, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568644

RESUMEN

Promoter-proximal pausing regulates eukaryotic gene expression and serves as checkpoints to assemble elongation/splicing machinery. Little is known how broadly this type of pausing regulates transcription in bacteria. We apply nascent elongating transcript sequencing combined with RNase I footprinting for genome-wide analysis of σ70-dependent transcription pauses in Escherichia coli. Retention of σ70 induces strong backtracked pauses at a 10-20-bp distance from many promoters. The pauses in the 10-15-bp register of the promoter are dictated by the canonical -10 element, 6-7 nt spacer and "YR+1Y" motif centered at the transcription start site. The promoters for the pauses in the 16-20-bp register contain an additional -10-like sequence recognized by σ70. Our in vitro analysis reveals that DNA scrunching is involved in these pauses relieved by Gre cleavage factors. The genes coding for transcription factors are enriched in these pauses, suggesting that σ70 and Gre proteins regulate transcription in response to changing environmental cues.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Bacteriano/genética , Factor sigma/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , ARN Bacteriano/metabolismo , Análisis de Secuencia de ARN , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética
5.
Crit Rev Biochem Mol Biol ; 55(6): 716-728, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33003953

RESUMEN

Although transcription by RNA polymerase (RNAP) is highly processive, elongation can be transiently halted by RNAP pausing. Pausing provides time for diverse regulatory events to occur such as RNA folding and regulatory factor binding. The transcription elongation factors NusA and NusG dramatically affect the frequency and duration of RNAP pausing, and hence regulation of transcription. NusG is the only transcription factor conserved in all three domains of life; its homolog in archaea and eukaryotes is Spt5. This review focuses on NusG-dependent pausing, which is a common occurrence in Bacillus subtilis. B. NusG induces pausing about once per 3 kb at a consensus TTNTTT motif in the non-template DNA strand within the paused transcription bubble. A conserved region of NusG contacts the TTNTTT motif to stabilize the paused transcription elongation complex (TEC) in multiple catalytically inactive RNAP conformations. The density of NusG-dependent pause sites is 3-fold higher in untranslated regions, suggesting that pausing could regulate the expression of hundreds of genes in B. subtilis. We describe how pausing in 5' leader regions contributes to regulating the expression of B. subtilis genes by transcription attenuation and translation control mechanisms. As opposed to the broadly accepted view that NusG is an anti-pausing factor, phylogenetic analyses suggest that NusG-dependent pausing is a widespread mechanism in bacteria. This function of NusG is consistent with the well-established role of its eukaryotic homolog Spt5 in promoter-proximal pausing. Since NusG is present in all domains of life, NusG-dependent pausing could be a conserved mechanism in all organisms.


Asunto(s)
Bacillus subtilis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Filogenia , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética
6.
Proc Natl Acad Sci U S A ; 117(35): 21628-21636, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817529

RESUMEN

Transcription is punctuated by RNA polymerase (RNAP) pausing. These pauses provide time for diverse regulatory events that can modulate gene expression. Transcription elongation factors dramatically affect RNAP pausing in vitro, but the genome-wide role of such factors on pausing has not been examined. Using native elongating transcript sequencing followed by RNase digestion (RNET-seq), we analyzed RNAP pausing in Bacillus subtilis genome-wide and identified an extensive role of NusG in pausing. This universally conserved transcription elongation factor is known as Spt5 in archaeal and eukaryotic organisms. B. subtilis NusG shifts RNAP to the posttranslocation register and induces pausing at 1,600 sites containing a consensus TTNTTT motif in the nontemplate DNA strand within the paused transcription bubble. The TTNTTT motif is necessary but not sufficient for NusG-dependent pausing. Approximately one-fourth of these pause sites were localized to untranslated regions and could participate in posttranscription initiation control of gene expression as was previously shown for tlrB and the trpEDCFBA operon. Most of the remaining pause sites were identified in protein-coding sequences. NusG-dependent pausing was confirmed for all 10 pause sites that we tested in vitro. Putative pause hairpins were identified for 225 of the 342 strongest NusG-dependent pause sites, and some of these hairpins were shown to function in vitro. NusG-dependent pausing in the ribD riboswitch provides time for cotranscriptional binding of flavin mononucleotide, which decreases the concentration required for termination upstream of the ribD coding sequence. Our phylogenetic analysis implicates NusG-dependent pausing as a widespread mechanism in bacteria.


Asunto(s)
Bacillus subtilis/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Factores de Elongación de Péptidos/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Operón/genética , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Translocación Genética/genética
7.
mBio ; 10(6)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719185

RESUMEN

Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription attenuation and translation attenuation mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrBIMPORTANCE Antibiotic resistance is a growing health concern. Resistance mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Factores de Elongación de Péptidos/metabolismo , ARN Ribosómico 23S/genética , Ribosomas/metabolismo , Tilosina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metilación , Regiones Promotoras Genéticas , Unión Proteica , ARN Ribosómico 23S/química , Transcripción Genética/efectos de los fármacos
8.
J Bacteriol ; 199(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507243

RESUMEN

The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several attenuation mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Operón/fisiología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Nat Microbiol ; 1: 15007, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27571753

RESUMEN

Intrinsic transcription terminators consist of an RNA hairpin followed by a U-rich tract, and these signals can trigger termination without the involvement of additional factors. Although NusA is known to stimulate intrinsic termination in vitro, the in vivo targets and global impact of NusA are not known because it is essential for viability. Using genome-wide 3' end-mapping on an engineered Bacillus subtilis NusA depletion strain, we show that weak suboptimal terminators are the principle NusA substrates. Moreover, a subclass of weak non-canonical terminators was identified that completely depend on NusA for effective termination. NusA-dependent terminators tend to have weak hairpins and/or distal U-tract interruptions, supporting a model in which NusA is directly involved in the termination mechanism. Depletion of NusA altered global gene expression directly and indirectly via readthrough of suboptimal terminators. Readthrough of NusA-dependent terminators caused misregulation of genes involved in essential cellular functions, especially DNA replication and metabolism. We further show that nusA is autoregulated by a transcription attenuation mechanism that does not rely on antiterminator structures. Instead, NusA-stimulated termination in its 5' UTR dictates the extent of transcription into the operon, thereby ensuring tight control of cellular NusA levels.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Terminación de la Transcripción Genética , Proteínas Bacterianas/genética , Genes Bacterianos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Especificidad por Sustrato
10.
J Biol Chem ; 291(10): 5299-308, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26742846

RESUMEN

NusG, referred to as Spt5 in archaeal and eukaryotic organisms, is the only transcription factor conserved in all three domains of life. This general transcription elongation factor binds to RNA polymerase (RNAP) soon after transcription initiation and dissociation of the RNA polymerase σ factor. Escherichia coli NusG increases transcription processivity by suppressing RNAP pausing, whereas Bacillus subtilis NusG dramatically stimulates pausing at two sites in the untranslated leader of the trpEDCFBA operon. These two regulatory pause sites participate in transcription attenuation and translational control mechanisms, respectively. Here we report that B. subtilis NusG makes sequence-specific contacts with a T-rich sequence in the non-template DNA (ntDNA) strand within the paused transcription bubble. NusG protects T residues of the recognition sequence from permanganate oxidation, and these T residues increase the affinity of NusG to the elongation complex. Binding of NusG to RNAP does not require interaction with RNA. These results indicate that bound NusG prevents forward movement of RNA polymerase by simultaneously contacting RNAP and the ntDNA strand. Mutational studies indicate that amino acid residues of two short regions within the NusG N-terminal domain are primarily responsible for recognition of the trp operon pause signals. Structural modeling indicates that these two regions are adjacent to each another in the protein. We propose that recognition of specific sequences in the ntDNA and stimulation of RNAP pausing is a conserved function of NusG-like transcription factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Datos de Secuencia Molecular , Unión Proteica , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
11.
Nucleic Acids Res ; 43(14): 7032-43, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101249

RESUMEN

Ribosomal protein genes are often controlled by autoregulatory mechanisms in which a protein encoded in the operon can either bind to newly synthesized rRNA during rapid growth or to a similar target in its mRNA during poor growth conditions. The rplJL operon encodes the ribosomal L10(L12)4 complex. In Escherichia coli L10(L12)4 represses its translation by binding to the rplJL leader transcript. We identified three RNA structures in the Bacillus subtilis rplJL leader transcript that function as an anti-antiterminator, antiterminator or intrinsic terminator. Expression studies with transcriptional and translational fusions indicated that L10(L12)4 represses rplJL expression at the transcriptional level. RNA binding studies demonstrated that L10(L12)4 stabilizes the anti-antiterminator structure, while in vitro transcription results indicated that L10(L12)4 promotes termination. Disruption of anti-antiterminator, antiterminator or terminator function by competitor oligonucleotides in vitro and by mutations in vivo demonstrated that each structure functions as predicted. Thus, rplJL expression is regulated by an autogenous transcription attenuation mechanism in which L10(L12)4 binding to the anti-antiterminator structure promotes termination. We also found that translation of a leader peptide increases rplJL expression, presumably by inhibiting Rho-dependent termination. Thus, the rplJL operon of B. subtilis is regulated by transcription attenuation and antitermination mechanisms.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Proteínas Ribosómicas/metabolismo , Regiones Terminadoras Genéticas , Terminación de la Transcripción Genética , Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Homeostasis , Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína Ribosómica L10 , Proteínas Ribosómicas/genética
12.
Curr Opin Microbiol ; 18: 68-71, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24632072

RESUMEN

NusG/Spt5 is a transcription elongation factor that assists in DNA-templated RNA synthesis by cellular RNA polymerases (RNAP). The modular domain composition of NusG/Spt5 and the way it binds to RNAP are conserved in all three domains of life. NusG/Spt5 closes RNAP around the DNA binding channel, thereby increasing transcription processivity. Recruitment of additional factors to elongating RNAP may be another conserved function of this ubiquitous protein. Eukaryotic Spt5 couples RNA processing and chromatin modification to transcription elongation, whereas bacterial NusG participates in a wide variety of processes, including RNAP pausing and Rho-dependent termination. Elongating RNAP forms a transcriptional bubble in which ∼12bp of the two DNA strands are locally separated. Within this transcription bubble the growing 3'-end of nascent RNA forms an 8-9bp long hybrid with the template DNA strand. Because of their location in the transcriptional bubble, NusG and its paralog RfaH recognize specific sequences in the nontemplate DNA strand and regulate transcription elongation in response to these signals.


Asunto(s)
Bacterias , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Escherichia coli/metabolismo , Eucariontes , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transactivadores/metabolismo
13.
Mol Microbiol ; 87(4): 851-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23305111

RESUMEN

Csr is a conserved global regulatory system that controls expression of several hundred Escherichia coli genes. CsrA protein represses translation of numerous genes by binding to mRNA and inhibiting ribosome access. CsrA also activates gene expression, although an activation mechanism has not been reported. CsrA activates flhDC expression, encoding the master regulator of flagellum biosynthesis and chemotaxis, by stabilizing the mRNA. Computer modelling, gel mobility shift and footprint analyses identified two CsrA binding sites extending from positions 1-12 (BS1) and 44-55 (BS2) of the 198 nt flhDC leader transcript. flhD'-'lacZ expression was reduced by mutations in csrA and/or the CsrA binding sites. The position of BS1 suggested that bound CsrA might inhibit 5' end-dependent RNase E cleavage of flhDC mRNA. Consistent with this hypothesis, CsrA protected flhDC leader RNA from RNase E cleavage in vitro and protection depended on BS1 and BS2. Primer extension studies identified flhDC decay intermediates in vivo that correspond to in vitro RNase E cleavage sites. Deletion of these RNase E cleavage sites resulted in increased flhD'-'lacZ expression. Data from mRNA decay studies and quantitative primer extension assays support a model in which bound CsrA activates flhDC expression by inhibiting the 5' end-dependent RNase E cleavage pathway.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/genética , Regiones no Traducidas 5' , Secuencia de Bases , Sitios de Unión , Endorribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Datos de Secuencia Molecular , Operón , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transactivadores/química , Transactivadores/metabolismo
14.
Orig Life Evol Biosph ; 43(1): 39-47, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23242831

RESUMEN

This model proposes that the origin of life on Earth occurred as a result of a process of alteration of the chemical composition of prebiotic macromolecules. The stability of organic compounds assembled into polymers generally exceeded the stability of the same compounds as free monomers. This difference in stability stimulated accumulation of prebiotic macromolecules. The prebiotic circulation of matter included constant formation and decomposition of polymers. Spontaneous chemical reactions between macromolecules with phosphodiester backbones resulted in a non-Darwinian selection for chemical stability, while formation of strong structures provided an advantage in the struggle for stability. Intermolecular structures between nucleotide-containing polymers were further stabilized by occasional acquisition of complementary nucleotides. Less stable macromolecules provided the source of nucleotides. This process resulted first in the enrichment of nucleotide content in prebiotic polymers, and subsequently in the accumulation of complementary oligonucleotides. Finally, the role of complementary copy molecules changed from the stabilization of the original templates to the de novo production of template-like molecules. I associate this stage with the origin of life in the form of cell-free molecular colonies. Original life acquired ready-to-use substrates from constantly forming prebiotic polymers. Metabolism started to develop when life began to consume more substrates than the prebiotic cycling produced. The developing utilization of non-polymeric compounds stimulated the formation of the first membrane-enveloped cells that held small soluble molecules. Cells "digested" the nucleotide-containing prebiotic macromolecules to nucleotide monomers and switched the mode of replication to the polymerization of nucleotide triphosphates.


Asunto(s)
Biopolímeros/química , Modelos Químicos , Nucleótidos/química , Organofosfatos/química , Origen de la Vida , Emparejamiento Base , Evolución Molecular , Ribosa/química
15.
Methods Mol Biol ; 905: 201-11, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22736005

RESUMEN

The gel mobility shift assay is a powerful technique for detecting and quantifying protein-RNA interactions. While other techniques such as filter binding and isothermal titration calorimetry (ITC) are available for quantifying protein-RNA interactions, gel shift analysis provides the added advantage that you can visualize the protein-RNA complexes. In the gel shift assay, protein-RNA complexes are typically separated from the unbound RNA using native polyacrylamide gels in Tris/borate/EDTA buffer, although an alternative Tris-glycine buffering system is superior in many situations. Here, we describe both gel shift methods, along with strategies to improve separation of protein-RNA complexes from free RNA, which can be a particular challenge for small RNA binding proteins.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética/métodos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Bóricos/química , Ácido Edético/química , Proteínas de Escherichia coli/metabolismo , Geles , Glicina/química , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
16.
Mol Microbiol ; 81(3): 689-704, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696456

RESUMEN

CsrA of Escherichia coli is an RNA-binding protein that globally regulates gene expression by repressing translation and/or altering the stability of target transcripts. Here we explored mechanisms that control csrA expression. Four CsrA binding sites were predicted upstream of the csrA initiation codon, one of which overlapped its Shine-Dalgarno sequence. Results from gel shift, footprint, toeprint and in vitro translation experiments indicate that CsrA binds to these four sites and represses its own translation by directly competing with 30S ribosomal subunit binding. Experiments were also performed to examine transcription of csrA. Primer extension, in vitro transcription and in vivo expression studies identified two σ7°-dependent (P2 and P5) and two σ(S) -dependent (P1 and P3) promoters that drive transcription of csrA. Additional primer extension studies identified a fifth csrA promoter (P4). Transcription from P3, which is indirectly activated by CsrA, is primarily responsible for increased csrA expression as cells transition from exponential to stationary-phase growth. Taken together, our results indicate that regulation of csrA expression occurs by a variety of mechanisms, including transcription from multiple promoters by two sigma factors, indirect activation of its own transcription, as well as direct repression of its own translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/biosíntesis , Proteínas Represoras/biosíntesis , Factor sigma/metabolismo , Activación Transcripcional , Secuencia de Bases , Sitios de Unión , Huella de ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Sitio de Iniciación de la Transcripción
17.
Mol Microbiol ; 76(3): 690-705, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20384694

RESUMEN

The Bacillus subtilis trpEDCFBA operon is regulated by TRAP-dependent transcription attenuation and translation repression mechanisms. Previous results showed that NusA and NusG cooperatively stimulate RNA polymerase pausing at U107 and U144 in the trp leader, and that NusG is required for pausing at U144 in vivo. Pausing at U107 and U144 participate in the attenuation and translation repression mechanisms, respectively, by providing additional time for TRAP binding. The intrinsic trp leader terminator overlaps the hairpin-dependent U144 pause site. Here, we conducted a systematic mutational analysis of the terminator/pause region. Deletion of the hairpin reduced pausing but did not affect pause site selection. Thus, hairpin-stimulated pausing is a more appropriate term than hairpin-dependent pausing for this pause site. In contrast, minor changes to the hairpin abolished termination. Sequences in the U-rich/T-rich tract following the hairpin affected termination and pausing differentially. The distance between the hairpin and the 3' end of the RNA dictates the position of termination, whereas the sequence downstream from the hairpin is responsible for pause site selection. NusA was found to increase both pausing and termination by reducing the rate of transcription. We also found that NusG-stimulated pausing is sequence specific and that NusG does not affect termination.


Asunto(s)
Regiones no Traducidas 5' , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencias Invertidas Repetidas , Factores de Elongación de Péptidos/metabolismo , Regiones Terminadoras Genéticas , Transcripción Genética , Bacillus subtilis/química , Proteínas Bacterianas/genética , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Operón , Factores de Elongación de Péptidos/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(42): 16131-6, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18852477

RESUMEN

NusA and NusG are transcription elongation factors that bind to RNA polymerase (RNAP) after sigma subunit release. Escherichia coli NusA (NusA(Ec)) stimulates intrinsic termination and RNAP(Ec) pausing, whereas NusG(Ec) promotes Rho-dependent termination and pause escape. Both Nus factors also participate in the formation of RNAP(Ec) antitermination complexes. We showed that Bacillus subtilis NusA (NusA(Bs)) stimulates intrinsic termination and RNAP(Bs) pausing at U107 and U144 in the trpEDCFBA operon leader. Pausing at U107 and U144 participates in the transcription attenuation and translational control mechanisms, respectively, presumably by providing additional time for trp RNA-binding attenuation protein (TRAP) to bind to the nascent trp leader transcript. Here, we show that NusG(Bs) causes modest pause stimulation at U107 and dramatic pause stimulation at U144. NusA(Bs) and NusG(Bs) act synergistically to increase the U107 and U144 pause half-lives. NusG(Bs)-stimulated pausing at U144 requires RNAP(Bs), whereas NusA(Bs) stimulates pausing of RNAP(Bs) and RNAP(Ec) at the U144 and E. coli his pause sites. Although NusG(Ec) does not stimulate pausing at U144, it competes with NusG(Bs)-stimulated pausing, suggesting that both proteins bind to the same surface of RNAP(Bs). Inactivation of nusG results in the loss of RNAP pausing at U144 in vivo and elevated trp operon expression, whereas plasmid-encoded NusG complements the mutant defects. Overexpression of nusG reduces trp operon expression to a larger extent than overexpression of nusA.


Asunto(s)
Bacillus subtilis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Bacillus subtilis/genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Elongación de Péptidos/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Triptófano/genética , Triptófano/metabolismo
19.
Orig Life Evol Biosph ; 37(6): 523-36, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17882534

RESUMEN

The origin of protein synthesis is one of the major riddles of molecular biology. It was proposed a decade ago that the ribosomal RNA evolved from an earlier RNA-replisome (a ribozyme fulfilling RNA replication) while transfer RNA (tRNA) evolved from a genomic replication origin. Applying these hypotheses, I suggest that protein synthesis arose for the purpose of segregating copy and template RNA during replication through the conventional formation of a complementary strand. Nascent RNA was scanned in 5' to 3' direction following the progress of replication. The base pairing of several tRNA-like molecules with nascent RNA released the replication intermediates trapped in duplex. Synthesis of random peptides evolved to fuel the turnover of tRNAs. Then the combination of replication-coupled peptide formation and the independent development of amino acid-specific tRNA aminoacylation resulted in template-based protein synthesis. Therefore, the positioning of tRNAs adjacent to each other developed for the purpose of replication rather than peptide synthesis. This hypothesis does not include either selection for useful peptides or specific recognition of amino acids at the initial evolution of translation. It does, however, explain a number of features of modern translation apparatus, such as the relative flexibility of genetic code, the number of proteins shared by the transcription and translation machines, the universal participation of an RNA subunit in co-translational protein secretion, 'unscheduled translation', and factor-independent translocation. Assistance of original ribosomes in keeping apart the nascent transcript from its template is still widely explored by modern bacteria and perhaps by other domains of life.


Asunto(s)
Biosíntesis de Proteínas , ARN/genética , Evolución Molecular , Modelos Biológicos , ARN/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
20.
J Bacteriol ; 189(3): 872-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17114263

RESUMEN

Bacillus subtilis trpG encodes a glutamine amidotransferase subunit that participates in the biosynthesis of both tryptophan and folic acid. TRAP inhibits translation of trpG in response to tryptophan by binding to a site that overlaps the trpG Shine-Dalgarno sequence, thereby blocking ribosome binding. Similar mechanisms regulate trpP and ycbK translation. The equilibrium binding constants of tryptophan-activated TRAP for the trpG, ycbK, and trpP transcripts were determined to be 8, 3, and 50 nM, respectively. Despite TRAP having a higher affinity for the trpG transcript, TRAP exhibited the least control of trpG expression. The trpG Shine-Dalgarno sequence overlaps the stop codon of the upstream pabB gene, while six of nine triplet repeats within the TRAP binding site are located upstream of the pabB stop codon. Thus, ribosomes translating the upstream pabB cistron could be capable of reducing TRAP-dependent control of TrpG synthesis by displacing bound TRAP. Expression studies using pabB-trpG'-'lacZ fusions in the presence or absence of an engineered stop codon within pabB suggest that translation-mediated displacement of bound TRAP reduces TRAP-dependent inhibition of TrpG synthesis from transcripts originating from the folate operon promoter (P(pabB)). A new trpG promoter (P(trpG)) was identified in the pabB coding sequence that makes a larger contribution to trpG expression than does P(pabB). We found that TRAP-dependent regulation of trpG expression is more extensive for a transcript originating from P(trpG) and that transcripts originating from P(trpG) are not subject to translation-mediated displacement of bound TRAP.


Asunto(s)
Antranilato Sintasa/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Transferasas de Grupos Nitrogenados/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Antranilato Sintasa/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Ácido Fólico/biosíntesis , Modelos Genéticos , Datos de Secuencia Molecular , Transferasas de Grupos Nitrogenados/genética , Operón , Unión Proteica , Biosíntesis de Proteínas , Alineación de Secuencia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...