Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Nerve ; 76(5): 671-680, 2024 May.
Artículo en Japonés | MEDLINE | ID: mdl-38741511

RESUMEN

Diabetes stands as the predominant cause of peripheral neuropathy, and diabetic neuropathy (DN) is an early-onset and most frequent complication of diabetes. Distal symmetric polyneuropathy is the major form of DN; however, various patterns of nerve injury can manifest. Growing evidence suggests that hyperglycemia-related metabolic disorders in neurons, Schwann cells, and vascular endothelial cells play a major role in the development and progression of DN; however, its pathogenesis and development of disease-modifying therapies warrant further investigation. Herein, recent studies regarding the possible pathogenic factors of DN (polyol and other collateral glycolysis pathways, glycation, oxidative stress, Rho/Rho kinase signaling pathways, etc.) and therapeutic strategies targeting these factors are introduced.


Asunto(s)
Neuropatías Diabéticas , Estrés Oxidativo , Humanos , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/etiología , Animales , Transducción de Señal
2.
Front Endocrinol (Lausanne) ; 14: 1208441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089620

RESUMEN

Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Ratones , Ratas , Animales , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nervio Ciático/metabolismo , Nervio Ciático/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 1/metabolismo
3.
Biochem Biophys Res Commun ; 649: 32-38, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36739697

RESUMEN

The small GTPase Rho and its effector Rho-kinase (ROCK) are activated in the diabetic kidney, and recent studies decade have demonstrated that ROCK signaling is an integral pathway in the progression of diabetic kidney disease. We previously identified the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism in diabetic glomeruli. However, the effect of pharmacological intervention for ROCK1 is not clear. In the present study, we show that the inhibition of ROCK1 by Y-27632 and fasudil restores fatty acid oxidation in the glomeruli. Mechanistically, these compounds optimize fatty acid utilization and redox balance in mesangial cells via AMPK phosphorylation and the subsequent induction of PGC-1α. A further in vivo study showed that the inhibition of ROCK1 suppressed the downregulation of the fatty acid oxidation-related gene expression in glomeruli and mitochondrial fragmentation in the mesangial cells of db/db mice. These observations indicate that ROCK1 could be a promising therapeutic target for diabetic kidney disease through a mechanism that improves glomerular fatty acid metabolism.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Quinasas Asociadas a rho/metabolismo , Glomérulos Renales/metabolismo , Riñón/metabolismo , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Diabetes Mellitus/metabolismo
4.
Front Cell Dev Biol ; 10: 950623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874814

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) were developed as insulinotropic and anti-hyperglycemic agents for the treatment of type 2 diabetes, but their neurotrophic and neuroprotective activities have been receiving increasing attention. Myelin plays a key role in the functional maintenance of the central and peripheral nervous systems, and recent in vivo and in vitro studies have shed light on the beneficial effects of GLP-1RAs on the formation and protection of myelin. In this article, we describe the potential efficacy of GLP-1RAs for the induction of axonal regeneration and remyelination following nerve lesions and the prevention and alleviation of demyelinating disorders, particularly multiple sclerosis.

5.
Kidney Int ; 102(3): 536-545, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35597365

RESUMEN

Dysregulation of fatty acid utilization is increasingly recognized as a significant component of diabetic kidney disease. Rho-associated, coiled-coil-containing protein kinase (ROCK) is activated in the diabetic kidney, and studies over the past decade have illuminated ROCK signaling as an essential pathway in diabetic kidney disease. Here, we confirmed the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism using glomerular mesangial cells and ROCK1 knockout mice. Mesangial cells with ROCK1 deletion were protected from mitochondrial dysfunction and redox imbalance driven by transforming growth factor ß, a cytokine upregulated in diabetic glomeruli. We found that high-fat diet-induced obese ROCK1 knockout mice exhibited reduced albuminuria and histological abnormalities along with the recovery of impaired fatty acid utilization and mitochondrial fragmentation. Mechanistically, we found that ROCK1 regulates the induction of critical mediators in fatty acid metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1α, carnitine palmitoyltransferase 1, and widespread program-associated cellular metabolism. Thus, our findings highlight ROCK1 as an important regulator of energy homeostasis in mesangial cells in the overall pathogenesis of diabetic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Quinasas Asociadas a rho , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
6.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457223

RESUMEN

Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.


Asunto(s)
Neuropatías Diabéticas , Ácidos Docosahexaenoicos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Muerte Celular , Neuropatías Diabéticas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Estrés Oxidativo , Ratas , Ratas Endogámicas F344 , Células de Schwann/metabolismo , Transducción de Señal , terc-Butilhidroperóxido/toxicidad
7.
Sci Rep ; 11(1): 18910, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556698

RESUMEN

Pyruvate functions as a key molecule in energy production and as an antioxidant. The efficacy of pyruvate supplementation in diabetic retinopathy and nephropathy has been shown in animal models; however, its significance in the functional maintenance of neurons and Schwann cells under diabetic conditions remains unknown. We observed rapid and extensive cell death under high-glucose (> 10 mM) and pyruvate-starved conditions. Exposure of Schwann cells to these conditions led to a significant decrease in glycolytic flux, mitochondrial respiration and ATP production, accompanied by enhanced collateral glycolysis pathways (e.g., polyol pathway). Cell death could be prevented by supplementation with 2-oxoglutarate (a TCA cycle intermediate), benfotiamine (the vitamin B1 derivative that suppresses the collateral pathways), or the poly (ADP-ribose) polymerase (PARP) inhibitor, rucaparib. Our findings suggest that exogenous pyruvate plays a pivotal role in maintaining glycolysis-TCA cycle flux and ATP production under high-glucose conditions by suppressing PARP activity.


Asunto(s)
Nefropatías Diabéticas/patología , Glucosa/metabolismo , Hiperglucemia/complicaciones , Ácido Pirúvico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Nefropatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Femenino , Glucólisis/efectos de los fármacos , Humanos , Hiperglucemia/sangre , Hiperglucemia/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Cultivo Primario de Células , Ratas , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/patología , Tiamina/análogos & derivados , Tiamina/farmacología , Tiamina/uso terapéutico
8.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804063

RESUMEN

Besides its insulinotropic actions on pancreatic ß cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron-IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.


Asunto(s)
Neuropatías Diabéticas/tratamiento farmacológico , Exenatida/farmacología , Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/genética , Animales , Movimiento Celular/genética , Supervivencia Celular/genética , Cromonas/farmacología , Técnicas de Cocultivo , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/patología , Exenatida/genética , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Morfolinas/farmacología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Nervio Ciático/lesiones
9.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494154

RESUMEN

Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN). Despite the intensive basic and clinical studies over the past four decades, the significance of AR over-activation as the pathogenic mechanism of DPN remains to be elucidated. Moreover, the expected efficacy of some AR inhibitors in patients with DPN has been unsatisfactory, which prompted us to further investigate and review the understanding of the physiological and pathological roles of AR in the PNS. Particularly, the investigation of AR and the polyol pathway using immortalized Schwann cells established from normal and AR-deficient mice could shed light on the causal relationship between the metabolic abnormalities of Schwann cells and discordance of axon-Schwann cell interplay in DPN, and led to the development of better therapeutic strategies against DPN.


Asunto(s)
Aldehído Reductasa/metabolismo , Redes y Vías Metabólicas , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética , Animales , Diabetes Mellitus/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Humanos , Oxidación-Reducción , Sorbitol/metabolismo
10.
Histochem Cell Biol ; 153(2): 111-119, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31734714

RESUMEN

Glycolaldehyde (GA) is a highly reactive hydroxyaldehyde and one of the glycolytic metabolites producing advanced glycation endproducts (AGEs), but its toxicity toward neurons and Schwann cells remains unclear. In the present study, we found that GA exhibited more potent toxicity than other AGE precursors (glyceraldehyde, glyoxal, methylglyoxal and 3-deoxyglucosone) against immortalized IFRS1 adult rat Schwann cells and ND7/23 neuroblastoma × neonatal rat dorsal root ganglion (DRG) neuron hybrid cells. GA affected adult rat DRG neurons and ND7/23 cells more severely than GA-derived AGEs, and exhibited concentration- and time-dependent toxicity toward ND7/23 cells (10 < 100 < 250 < 500 µM; 6 h < 24 h). Treatment with 500 µM GA significantly up-regulated the phosphorylation of c-jun N-terminal kinase (JNK) and p-38 mitogen-activated kinase (p-38 MAPK) in ND7/23 cells. Furthermore, GA-induced ND7/23 cell death was significantly inhibited due to co-treatment with 10 µM of the JNK inhibitor SP600125 or the p-38 MAPK inhibitor SB239063. These findings suggest the involvement of JNK and p-38 MAPK-signaling pathways in GA-induced neuronal cell death and that enhanced GA production under diabetic conditions might be involved in the pathogenesis of diabetic neuropathy.


Asunto(s)
Acetaldehído/análogos & derivados , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Acetaldehído/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Femenino , Ratas , Ratas Wistar , Células Receptoras Sensoriales/metabolismo
11.
Adv Exp Med Biol ; 1190: 357-369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31760656

RESUMEN

A large variety of drugs have been reported to cause peripheral neuropathies as dose-limiting adverse effects; however, most of them primarily affect axons and/or neuronal cell bodies rather than Schwann cells and/or myelin sheaths. In this chapter, we focus on the drugs that seem to elicit the neuropathies with schwannopathy and/or myelinopathy-predominant phenotypes, such as amiodarone, dichloroacetate, and tumor necrosis factor-α antagonists. Although the pathogenesis of demyelination induced by these drugs remain largely obscure, the recent in vivo and in vitro studies have implicated the involvement of metabolic abnormalities and impaired autophagy in Schwann cells and immune system disorders in the disruption of neuron-Schwann cell contact and interactions.


Asunto(s)
Enfermedades Desmielinizantes/inducido químicamente , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Vaina de Mielina/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Células de Schwann/patología , Amiodarona/efectos adversos , Axones , Ácido Dicloroacético/efectos adversos , Humanos , Vaina de Mielina/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
12.
Neurosci Res ; 147: 26-32, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30444976

RESUMEN

Hypoglycemia and fluctuating high or low glucose conditions are under-appreciated sources of oxidative stress contributing to diabetic neuropathy. We investigated the effects of recurrent short-term hypoglycemia and hyperglycemia, on apoptosis and oxidative stress in Schwann cells. Immortalized adult mouse Schwann (IMS32) cells were exposed to five different glucose treatments over 3 days: 1) normal glucose (NG), 2) constant low glucose (LG), 3) constant high glucose (HG), 4) intermittent low glucose (ILG; 1 h three times per day), 5) intermittent high glucose (IHG; 1 h three times per day). Cell viability was decreased by all treatment variants, in comparison to NG. Thiobarbituric acid reactive substance (TBARS) levels were increased by HG, LG, IHG, and ILG. High glucose (HG and IHG) and low glucose (LG and ILG) increased the expression of cleaved caspase-3 and reduced that of Bcl-2. In addition, endoplasmic reticulum (ER) stress-responsive transcription factor C/EBP homologous protein (CHOP) expression was increased under low and high glucose conditions. Cell death and oxidative stress induced by HG, LG, IHG, and ILG were significantly reduced by 4-phenyl butyric acid (4-PBA), an ER stress inhibitor. These findings indicate that recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in Schwann cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucosa/farmacología , Hiperglucemia/metabolismo , Hipoglucemia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico , Interleucina-6 , Malondialdehído/metabolismo , Ratones , Fenilbutiratos/farmacología , Células de Schwann , Factor de Necrosis Tumoral alfa
13.
Histochem Cell Biol ; 149(5): 537-543, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29435762

RESUMEN

Co-culture models of neurons and Schwann cells have been utilized for the study of myelination and demyelination in the peripheral nervous system; in most of the previous studies, however, these cells were obtained by primary culture with embryonic or neonatal animals. A spontaneously immortalized Schwann cell line IFRS1 from long-term cultures of adult Fischer rat peripheral nerves has been shown to retain fundamental ability to myelinate neurites in co-cultures with adult rat dorsal root ganglion neurons and nerve growth factor-primed PC12 cells. Our current investigation focuses on the establishment of stable co-culture system with IFRS1 cells and NSC-34 motor neuron-like cells. NSC-34 cells were seeded at a low density (2 × 103/cm2) and maintained for 5-7 days in serum-containing medium supplemented with non-essential amino acids and brain-derived neurotrophic factor (BDNF; 10 ng/mL). Upon observation of neurite outgrowth under a phase-contrast microscope, the NSC-34 cells were exposed to an anti-mitotic agent mitomycin C (1 µg/mL) for 12-16 h, then co-cultured with IFRS1 cells (2 × 104/cm2), and maintained in serum-containing medium supplemented with ascorbic acid (50 µg/mL), BDNF (10 ng/mL), and ciliary neurotrophic factor (10 ng/mL). Double immunofluorescence staining carried out at day 28 of the co-culture showed myelin protein (P0 or PMP22)-immunoreactive IFRS1 cells surrounding the ßIII tubulin-immunoreactive neurites. This co-culture system can be a beneficial tool to study the pathogenesis of motor neuron diseases (e.g., amyotrophic lateral sclerosis, Charcot-Marie-Tooth diseases, and immune-mediated demyelinating neuropathies) and novel therapeutic approaches against them.


Asunto(s)
Técnicas de Cocultivo/métodos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Animales , Línea Celular , Ratas
14.
Cell Tissue Res ; 371(2): 339-350, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274061

RESUMEN

The non-endocrine TtT/GF mouse pituitary cell line was derived from radiothyroidectomy-induced pituitary adenoma. In addition to morphological characteristics, because the cells are S100ß-positive, they have been accepted as a model of folliculostellate cells. However, our recent microarray analysis indicated that, in contrast to folliculostellate cells, TtT/GF cells might not be terminally differentiated, as they share some properties with stem/progenitor cells, vascular endothelial cells and pericytes. The present study investigates whether transforming growth factor beta (TGFß) can elicit further differentiation of these cells. The results showed that canonical (Tgfbr1 and Tgfbr2) and non-canonical TGFß receptors (Tgfbr3) as well as all TGFß ligands (Tgfb1-3) were present in TtT/GF cells, based on reverse transcription PCR. SMAD2, an intercellular signaling molecule of the TGFß pathway, was localized in the nucleus upon TGFß signaling. Furthermore, TGFß induced cell colony formation, which was completely blocked by a TGFß receptor I inhibitor (SB431542). Real-time PCR analysis indicated that TGFß downregulated stem cell markers (Sox2 and Cd34) and upregulated pericyte markers (Nestin and Ng2). Double immunohistochemistry using mouse pituitary tissue confirmed the presence of NESTIN/NG2 double-positive cells in perivascular areas where pericytes are localized. Our results suggest that TtT/GF cells are responsive to TGFß signaling, which is associated with cell colony formation and pericyte differentiation. As pericytes have been shown to regulate angiogenesis, tumorigenesis and stem/progenitor cells in other tissues, TtT/GF cells could be a useful model to study the role of pituitary pericytes in physiological and pathological processes.


Asunto(s)
Pericitos/metabolismo , Hipófisis/citología , Hipófisis/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antígenos/metabolismo , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Forma de la Célula , Humanos , Ligandos , Ratones , Nestina/metabolismo , Isoformas de Proteínas/metabolismo , Proteoglicanos/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/genética
15.
J Neurochem ; 144(6): 710-722, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29238976

RESUMEN

The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR.


Asunto(s)
Aldehído Reductasa/metabolismo , Aldehídos/metabolismo , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldehído Reductasa/genética , Animales , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Medios de Cultivo Condicionados , Femenino , Ganglios Espinales/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas , Nervios Periféricos/citología , ARN Mensajero/metabolismo , Transducción de Señal , Regulación hacia Arriba
16.
PLoS One ; 11(10): e0163981, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695124

RESUMEN

The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100ß-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100ß-positive cells, we performed immunohistochemical analysis using several markers in S100ß/GFP-TG rats, which express GFP in S100ß-expressing cells under control of the S100ß promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100ß-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Adenohipófisis/citología , Adenohipófisis/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Animales , Biomarcadores , Feto , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Masculino , Organogénesis/genética , Hormonas Hipofisarias/metabolismo , Regiones Promotoras Genéticas , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/genética
17.
Eur J Neurosci ; 44(1): 1723-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27152884

RESUMEN

Amiodarone hydrochloride (AMD), an anti-arrhythmic agent, has been shown to cause peripheral neuropathy; however, its pathogenesis remains unknown. We examined the toxic effects of AMD on an immortalized adult rat Schwann cell line, IFRS1, and cocultures of IFRS1 cells and adult rat dorsal root ganglion neurons or nerve growth factor-primed PC12 cells. Treatment with AMD (1, 5, and 10 µm) induced time- and dose-dependent cell death, accumulation of phospholipids and neutral lipids, upregulation of the expression of gangliosides, and oxidative stress (increased nuclear factor E2-related factor in nuclear extracts and reduced GSH/GSSG ratios) in IFRS1 cells. It also induced the upregulation of LC3-II and p62 expression, with phosphorylation of p62, suggesting that deficient autolysosomal degradation is involved in AMD-induced IFRS1 cell death. Furthermore, treatment of the cocultures with AMD induced detachment of IFRS1 cells from neurite networks in a time- and dose-dependent manner. These findings suggest that AMD-induced lysosomal storage accompanied by enhanced oxidative stress and impaired lysosomal degradation in Schwann cells might be a cause of demyelination in the peripheral nervous system.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Lisosomas/metabolismo , Estrés Oxidativo , Células de Schwann/metabolismo , Amiodarona/toxicidad , Animales , Células Cultivadas , Inhibidores Enzimáticos/toxicidad , Femenino , Ganglios Espinales/citología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Células PC12 , Fosfolípidos/metabolismo , Ratas , Ratas Wistar , Células de Schwann/efectos de los fármacos
18.
Cell Tissue Res ; 363(2): 513-24, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26246400

RESUMEN

Among heterogeneous S100ß-protein-positive (S100ß-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100ß-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100ß-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100ß-promoter has allowed us to observe living S100ß-positive cells. In the present study, we first confirmed that living S100ß-positive cells in tissue cultures of S100ß-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100ß-positive cells. Interestingly, we detected Slug expression in S100ß-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100ß-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100ß-positive cells express Slug and that its expression is important for subsequent migration and proliferation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Adenohipófisis/crecimiento & desarrollo , Adenohipófisis/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Western Blotting , Proliferación Celular , Regulación hacia Abajo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Adenohipófisis/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Transgénicas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo
19.
Cell Tissue Res ; 364(2): 273-88, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26613603

RESUMEN

The pituitary gland, an indispensable endocrine organ that synthesizes and secretes pituitary hormones, develops with the support of many factors. Among them, neuronatin (NNAT), which was discovered in the neonatal mouse brain as a factor involved in neural development, has subsequently been revealed to be coded by an abundantly expressing gene in the pituitary gland but its role remains elusive. We analyze the expression profile of Nnat and the localization of its product during rat pituitary development. The level of Nnat expression was high during the embryonic period but remarkably decreased after birth. Immunohistochemistry demonstrated that NNAT appeared in the SOX2-positive stem/progenitor cells in the developing pituitary primordium on rat embryonic day 11.5 (E11.5) and later in the majority of SOX2/PROP1 double-positive cells on E13.5. Thereafter, during pituitary embryonic development, Nnat expression was observed in some stem/progenitor cells, proliferating cells and terminally differentiating cells. In postnatal pituitaries, NNAT-positive cells decreased in number, with most coexpressing Sox2 or Pit1, suggesting a similar role for NNAT to that during the embryonic period. NNAT was widely localized in mitochondria, peroxisomes and lysosomes, in addition to the endoplasmic reticulum but not in the Golgi. The present study thus demonstrated the variability in expression of NNAT-positive cells in rat embryonic and postnatal pituitaries and the intracellular localization of NNAT. Further investigations to obtain functional evidence for NNAT are a prerequisite.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Hipófisis/embriología , Hipófisis/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Lisosomas/metabolismo , Masculino , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Ratas , Ratas Wistar , Factores de Transcripción SOXB1/metabolismo
20.
J Reprod Dev ; 60(4): 295-303, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24881870

RESUMEN

The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool for investigating the function of derived tissue. In this study, we compared gene expression profiles by microarray analysis and real-time PCR for murine pituitary tumor-derived non-hormone-producing cell lines TtT/GF, Tpit/F1 and Tpit/E. Several genes are characteristically expressed in each cell line: Abcg2, Nestin, Prrx1, Prrx2, CD34, Eng, Cspg4 (Ng2), S100ß and nNos in TtT/GF; Cxcl12, Raldh1, Msx1 and Twist1 in Tpit/F1; and Cxadr, Sox9, Cdh1, EpCAM and Krt8 in Tpit/E. Ultimately, we came to the following conclusions: TtT/GF cells show the most differentiated state, and may have some properties of the pituitary vascular endothelial cell and/or pericyte. Tpit/F1 cells show the epithelial and mesenchymal phenotypes with stemness still in a transiting state. Tpit/E cells have a phenotype of epithelial cells and are the most immature cells in the progression of differentiation or in the initial endothelial-mesenchymal transition (EMT). Thus, these three cell lines must be useful model cell lines for investigating pituitary stem/progenitor cells as well as organogenesis.


Asunto(s)
Línea Celular/citología , Hipófisis/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular/metabolismo , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Ratones , Hipófisis/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...