Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(24): e2306388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477522

RESUMEN

CD47-SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47-SIRPα axis is associated with on-target off-tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano-degrader is developed to inhibit CD47-SIRPα axis in a site-specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated. The nano-degrader is constructed by hybridizing liposome with red blood cell (RBC) membrane (RLP), which mimics the CD47 density of senescent RBCs and possesses a natural high-affinity binding capability to SIRPα on macrophages without signaling capacity. RLP would bind with SIRPα and induce its lysosomal degradation through receptor-mediated endocytosis. To enhance its tissue specificity, Ly6G antibody conjugation (aRLP) is applied, enabling its attachment to neutrophils and accumulation within inflammatory sites. In the myocardial infarction model, aRLP accumulated in the infarcted myocardium blocks CD47-SIRPα axis and subsequently promoted the efferocytosis of apoptotic cardiomyocytes by macrophage, improved heart repair. This nano-degrader efficiently degraded SIRPα in lysosomes, providing a new strategy for immunotherapy with great clinical transformation potential.


Asunto(s)
Antígeno CD47 , Macrófagos , Receptores Inmunológicos , Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Animales , Receptores Inmunológicos/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Infarto del Miocardio/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Antígenos de Diferenciación/inmunología , Fagocitosis/efectos de los fármacos , Biomimética/métodos , Humanos , Eferocitosis
2.
J Nanobiotechnology ; 20(1): 454, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266658

RESUMEN

Resolvin D1 (RvD1) has been shown to provide effective protection against ischemia-reperfusion injury in multiple vital organs such as the heart, brain, kidney. However, the clinical translational potential of systemic administration of RvD1 in the treatment of ischemia-reperfusion injury is greatly limited due to biological instability and lack of targeting ability. Combining the natural inflammatory response and reactive oxygen species (ROS) overproduction after reperfusion injury, we developed a platelet-bionic, ROS-responsive RvD1 delivery platform. The resulting formulation enables targeted delivery of RvD1 to the injury site by hijacking circulating chemotactic monocytes, while achieving locally controlled release. In a mouse model of myocardial ischemia repefusuin (MI/R) injury, intravenous injection of our formula resulted in the enrichment of RvD1 in the injured area, which in turn promotes clearance of dead cells, production of specialized proresolving mediators (SPMs), and angiogenesis during injury repair, effectively improving cardiac function. This delivery system integrates drug bio-protection, targeted delivery and controlled release, which endow it with great clinical translational value.


Asunto(s)
Liposomas , Daño por Reperfusión Miocárdica , Ratones , Animales , Especies Reactivas de Oxígeno , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Preparaciones de Acción Retardada
3.
J Nanobiotechnology ; 20(1): 218, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525963

RESUMEN

Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI. By fusing neutrophil membranes with conventional liposomes, we fabricated biomimetic liposomes (Neu-LPs) that inherited the surface antigens of the source cells, making them ideal decoys of neutrophil-targeted biological molecules. Based on their abundant chemokine and cytokine membrane receptors, Neu-LPs targeted infarcted hearts, neutralized proinflammatory cytokines, and thus suppressed intense inflammation and regulated the immune microenvironment. Consequently, Neu-LPs showed significant therapeutic efficacy by providing cardiac protection and promoting angiogenesis in a mouse model of myocardial ischemia-reperfusion. Therefore, Neu-LPs have high clinical translation potential and could be developed as an anti-inflammatory agent to remove broad-spectrum inflammatory cytokines during MI and other neutrophil-involved diseases.


Asunto(s)
Citocinas , Neutrófilos , Animales , Antiinflamatorios , Biomimética , Modelos Animales de Enfermedad , Lipopolisacáridos , Liposomas , Ratones
4.
Adv Sci (Weinh) ; 8(15): e2100787, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34137511

RESUMEN

Inflammatory modulations focusing on macrophage phenotype are promising candidates to promote better cardiac healing post myocardial ischemia-reperfusion (MI/R) injury. However, the peak of monocyte/macrophage recruitment is later than the time when enhanced permeability and retention effect disappears, which greatly increases the difficulty of reprogramming macrophages through systemic administration. Meanwhile, the inability of nanomaterials to release their contents to specific intracellular locations through reasonable cellular internalization pathways is another obstacle to achieving macrophage reprogramming. Here, inspired by the increase in circulating platelet-monocyte aggregates in patients' post-MI/R and the high efficiency of fusogenic liposomes to deliver contents to the cytoplasm of target cells, a platelet-like fusogenic liposome (PLPs) is constructed. Under the coating of PLPs, mesoporous silica nanospheres with a payload of miR-21, an anti-inflammatory agent, can be specifically delivered to inflammatory monocytes in the blood circulation of MI/R induced mice. Then it directly enters the cytoplasm of monocytes through membrane fusion, thereby realizing the reparative reprogramming of the inflamed macrophages derived from it. In vivo administration of the resulting formula can effectively preserve the cardiac function of mice undergone MI/R. Minimal invasiveness and biological safety make this nano-platform a promising approach of immunotherapy.


Asunto(s)
Liposomas/metabolismo , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Remodelación Ventricular/fisiología , Animales , Plaquetas , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Transducción de Señal , Remodelación Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...